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So, welcome back to the course on Architectural Design of ICs.

(Refer Slide Time: 00:22)

So,  in  the  last  class,  we have seen what  is  the meaning of  or  what  is  this  constant

multiplication and then, why I require this reconfigurable architecture for this constant

multiplier design, what is the usefulness of constant multiplier design? That means, in

compare to the generic multiplier, that means design I can save or I can optimize the

multiplier  design in a better  way whenever we are doing this constant multiplication

operation, ok.

So, after that we have considered one 3 TAP fir filter, where we are using 3 constant

numbers where as which is let us consider a b and c. So, at that time after that we have

seen that ok, it requires this 24 number of anding operation, then 21 number of addition

operation to do this whole of, to implement the whole circuit of doing this a x in b x in

and c x in, ok.



So, now my point is that can I optimize this more? This can I save or can I reduce these

numbers 24 and 21 in a better way or in a. That means, can I reduce this number. If I can

reduce, then how can I reduce that? So, I told you for that there are different algorithms

to  do  that  ok.  So,  among them this  binary  common sub expression elimination  and

algorithm is one of the efficient one which can where by which we can reduce which is

basically applicable for reconfigurable this constant multiplier design by which we can

reduce this number. So, how we can reduce these number that we will see.
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So, suppose in a constant multiplication operation ok, we are having this input and the

coefficient.  So,  input  and  the  coefficient  means  x  in  is  the  input  and  coefficient  is

nothing, but this a b and c. So, each of this if I consider each of these are of 16 bit, ok.

So, 16 bit means if these input is x 1 ok, they are of 16 bit and this y 1, y 1 is basically a

into x 1, ok that means what this y 1 is basically a into x 1, equals to y 1.
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So, how can I write this y 1? I can write considering the fact that what I said that the

worst case condition of this a is when all the big position of a are 1, when all the big

position of a are 1, at that time that means each of these product term I have to consider,

right. That means what? Means what at that time that means, a 15 into x 1 by 2 plus a 14

into x 1 by 4 a13 into x 1 by 8 something like this. Each of this, if each of this bit is 1, so

that means at that time these equations can be written only in terms of x 1 and that is

basically  written  in  this  form  where  I  have  removed  the  corresponding  position

considering that a 15 is 1.

So, I will get x 1 by 2. Here a 14 is 1. So, I will get x 1 by 4, here a 13 is 1. So, I will get

x 1 by 8 over here. So, a 12 is 1. So, x 1 by 16 is 1. So, in this manner I will get that

means, for doing this a x 1 which is y 1.
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So, I will get each of these terms which I have to add, ok. So, in here what is there? That 

means we have considered 16 numbers; let us consider 8 numbers, ok.

(Refer Slide Time: 05:05)

So, if I consider 8 numbers, so a into x 1 which is y 1 that can be written as x 1 by 2 plus

x 1 by 4 plus x 1 by 8, x 1 by 16 plus x 1 by 32, x 1 by 64, x 1 by 128 plus x 1 by 256,

right. Now, if you see in these particular terms each of these basically contains the values

of x 1. So, now if I take this as a common term actually this is nothing, but actually this

is generic mathematics. If I take this x 1 by 2 plus x 1 by 4 as let us consider these as x 2,

ok. So, now how I can represent the same equation?

So, this now this can be represented as x 2. So, if I just take 1 by 4 common over here, so

this can also be written as x 1 by, sorry 2 plus x 1 by 4. Then, if I just take common of

these, so this also can be written as x 1 by 2 plus x 1 by 4 plus again here if I take

common, so x 1 by 2 plus x 1 by 4, right. So, if I just take this x 1 by 2 plus x 1 by 4 as x

2, so how can I write? X 2 plus this is also x 2. So, now it will become x 2 by 4 plus here

x 2 by 16 plus x 2 by 64, ok. That means, now what I have to do? Initially only once I

have to do this, x 1 by 2 plus x 1 by 4 that means, if I just do it x 1 by 2 and x 1 by 4, this

is producing x 2, right. So, then to do this what I require? Then this basically again it will

come this is basically right shift by 4 means this is by 2 bit.

So, I need another addition operation, where this is 16 means this is basically left shift by

4, then again I need to do this where this is basically left shift by 6 and then, if I just add,

then finally I will get the same thing whatever is that. That means, y 1 a into x 1. The

same thing I will get by this corresponding structure. If I take common of this x 1 by 2

plus x 1 by 4, that means now initially if I do not take common, so at that time how many



addition operation I require? That is 7 numbers, right. In this particular case, if I take

common as this x 1 by 2 plus x 1 by 4 as x 2, if I take it common the factor has common,

then how many require? It is 1 2 3 4.

So, that means 4 number of addition operation I require now. So, that means number

now becomes down to 7 to 4. So, for one particular multipliers, now this number has

come down to 4. So, for 3 how many require? 12 number of addition operation where as

initially it was 7 into 3 21 number of addition operation. So, that means I can save 9

number of addition operation, ok. So, these particular things whatever I did that x 1 by 2

plus x 1 by 4 which I have taken it common.

So,  this  particular  things  is  basically  known  as  binary  common  sub  expression

elimination algorithm. So, these are the basically sub expression which is related to this.

So, based on that, now I can reduce the number of addition terms in this way, ok. So, this

kind  of  structure  is  basically  useful,  very  much  useful  whenever  we  do  this

reconfigurable  constant  multiplier  design.  So,  that  means now what  is  that?  For  one

constant  multiplier  I  am setting  3  number  of  addition  operation.  So,  now more  the

number of constant multiplication is required for one filter implementation or for any

transfer implementation. So, the more number of constant of this I will use, more the

number of savings I will I can guarantee. That means, for 3 numbers that became 3 into

3, 9 numbers savings.

So,  if  the  number  is  10,  so  at  that  time 10 into  3 is  that  is  30 number  of  addition

operation. So, the more in the number of that constant multiplier, more in the number of

saving, ok. So, this is the fact that using this binary common sub expression, this is the

beauty  of  this  binary  common sub expression  algorithm which  is  basically  used  for

constant multiplication operation.

So, if you just and here you see application, it can be used in any digital filter, then any

transform which is basically FFT, DWT, DCT, DHT and as you see that this constant

multiplication that can be represented in terms of that can be done in terms of binary

common sub expression, then canonical sign digit based common sub expression, then

this residual number system based common sub expression, then canonical sign digit

based expression. All these things you can do.



(Refer Slide Time: 12:31)

So, here what is this consider? This is basically considering this 2 bit binary common sub

expression. So, y 2 bit as this x 1 by 2 plus x 1 by 4 if I take. So, at that time here

actually it is taking x 1 a plus x 1 by 2. So, instead that you can also take x 1 by 2 plus x

1 by 4. Nothing is actually that is not a problem. It depends upon which common sub,

 sub expression you want to basically take it common, ok. So, as we are considering only

two numbers over here, so that is why two number means that they are basically differed

by their positions. So, this is 2 to the power minus 1 position. This is for 2 to the power

minus  2 position,  ok.  So,  that  is  why we are  considering  2 bit  binary  common sub

expression. So, if we take common 3 number of them, that means x 1 by 2 plus x 1 by 4

plus x 1 by 8. So, at time it becames 3 bit binary common sub expressions.

So, if you take it four times common, that means it became 4 bit common sub expression

elimination algorithm. So, it depends on how many number of bits you want to take it

common for  this  binary common sub expression,  ok.  So, it  is  not  that  the more the

number of, that means common sub expression you will choose if the length of this BCS

is more. That means, this number in the later case that will be reduced by divide of that;

divide of that  means here you see as I  am considering 2 bit.  So,  that means this  16

numbers that has reduced to 8 now, ok. So, if I take it common 4 times over here, so at

that time it will become the 4th terms will come over here.

So, that means 4 for doing this 4, I need 3 adder and here to doing this, then again I need

another 3 adder. So, total 6 number of addition operation I require at that time. Initially

here I require to do this 16 I require 15, but if I take 14 bit common, sorry 4 bit BCS, so

at time 6 number of addition operation I require. So, if take 2 bit BCS common, so at that

time  for  this  I  need 1 and 7.  I  will  get  over  here.  So,  total  8  number of  additional

operation I require. So, that means more the number of bit you consider for BCS, the



lesser the addition operation you require to do this constant multiplication, but the fact is

that at that time the addition operation which I am not considering in this particular fact

actually if I just see the corresponding structure of these, ok.
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So, this is basically this for this x 1 plus x, x 1 plus x 1 by 2 that has been generated

through this partial product unit and based on that in each of this additional operation is

basically doing this.
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If I take 4 bit common so, at that time doing this x 1 plus x 1 by 2, I need only 1 adder

right, but if I take 4 bit common, so at that time how many bits I need to add? So, at that

time I need to add x 1 plus x 1 by 2 plus x 1 by 4 plus x 1 by 8. That means, at this I need

3 adders in a chain. So, 3 adder and then, again this particular this will be then adder in a

chain. So, then again for this another 4 bit, that means 4 of this addition operation x 1 by

2 plus x 1 by 4 plus x 1 by 8 plus x 1 by 16. This requires another three levels of addition

operations. Sorry not three level, this requires basically two level of additional operation.

So, that means total four number of additional operation I require.

So, that means it is not the fact that more the number of BCS I will choose and I will get

the benefits in terms of the area will be minimized. At that time, the number or addition

operation will be minimized, but speed wise the addition operation in a chain that will be

maximized at that time, ok. So, that is why it is not that you need to choose this size of

BCS in such a way, so that you are getting in terms of this speed as well as the area in

both  the  things  if  you are  getting  the  benefits  so,  at  that  time you choose  the  BCS

according to that.

So, according to that we have seen that this 2 bit BCS or 3 bit BCS. They are the like the

max. That means, they are the most useful BCS terms or the length of the BCS is more

that means, the advantageous one in terms of speed as well as the power and area for

constant multiplication, this reconfigurable constant multiplication design, ok.

So, this is one of the technique used for this constant multiplication. Now, again you see

another thing over here. How can I now what is happening? Now the thing is that I

require total what I said. That means, for this I require 12 number of addition operation,

right. So, can I reduce this number more? Can I reduce it? Yes I can reduce it.
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How can I reduce it? Then again if I just write this particular terms a into x 1, that is x 1

by 2 plus x 1 by 4 plus x 1 by 8 x 1 by 16, ok. So, what I did initially? X 1 by 2 plus x 1

by 4 plus 1 by 4 x 1 by 2 plus x 1 by 4 1 by 16, that is x 1 by 2 plus x 1 by 4, then again

1 by 64 that is x 1 by 2 plus x 1 by 4, right. So, what I did? X 1 by 2 plus x 1 by 4. I

write that as a x 2. So, this will become x 2 plus x 2 by 4, then x 2 plus x 2 by 16 plus x 2

by 64.

So, in a next level if you see these corresponding terms x 2 plus x 2 by 4, if you take

common, then x 2 plus x 2 by 4, that means what x 2 plus x 2 by 4. If I take that as x 3,

so this can be written as x 3 plus x 3 by 16. So, that means to do this x 2 plus x 2 by 4, I

require what I require only one adder here. I require one adder and to do this x 2 plus,

sorry x 1 by 2 plus x 1 by 4 I require one adder. So, that means total 3 number of adder

operation I require to do this whole addition operation.

Here I require how much? I require total four number of, so that means here if I take

another level common, so that means at that time I require only 3 number of addition

operation.  So, that  means now initially  how many I  require?  21 number of  addition

operation, right that is for unoptimized case. So, after doing this 2 bit BCSC, so that

number becomes 21 and then, again if I take two level of common, so at that time it

requires 3 into 3 means 9 number of addition operation. So, the same this is 2 bit BCSC,

but the common I have applied on two directional which vertical once and horizontal



once, ok. So, how vertical once how horizontal once that, I will show you in the, that

means presentation, but here the number will become 9 now.

So, initially we have started with 21 number of additional operation. So, after 2 bit BCS,

we have found out the number s 12. So, after that we have come down to the number s 9.

So,  that  means total  how many number? 12 number of  additional  operations  we are

savings for these 3 particular things. So, that means the more the number of more the,

that means constant multiplier we use, more the savings, we can guarantee using this

binary common sub expression for constant multiplication operation, ok. So, this is the

beauty of this particular algorithm and this particular method, ok.

So, here you see this is this is the, that means this two dimensional factor. So, here if I

consider this 4 coefficient, so suppose I consider and the length of this is 16 bit. Length

of the coefficient if that is 16 bit, so 3 bit will be applied like this as this you see. So,

each 15 each, 14 each 13 if this will be applied something this if we have to use this 2 bit

BCS.

So, at that time it will consider only two consecutive bits. That means which is 15, each

14, 13 is to l, each 11 is 10, each 9 is 8 something like this. So, instead 3 bit, it will

consider 3 consecutive bit which is each 15 a h 14 a h 13, ok. So, considering this fact I

will  get  the  circuits  something  like  this.  The  architecture  for  this  is  for  one  single

constant multiplication and then, for this is for 3 bit.
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One single constant multiplication.
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Then, as what I said this basically suffers from that means if I consider another level of 

optimization, so at that time I can reduce the number more.

(Refer Slide Time: 25:25)

That means, here what we do? That means, initially we did the, that means initially what

happens at the very fast level considering this 2 bit, we have applied the common sub

expression once, then what we did this among this. That means, here you see which



direction I am basically applying this corresponding this common sub expression that is

in the vertical direction.

Now, this among these among these horizontal direction, that means between each of

these coefficients if I have to find out another common sub expression, so at that time I

can reduce the number more by another one if I consider this 8 bit coefficient, ok. So,

that we have already seen in the previous case and based on that we can come down to

this another architecture.

(Refer Slide Time: 26:35)

That means, here this will basically skip the multiplication operation. The multiplication

operations are there, but if I found that more number of common, so at that time that

particular multiplier will be used skipped. It will use the shifted version of the pervious

results, means what actually what we see? Here from here, what we have seen that, after

doing this a common taking, common of this x 1 we are getting this x 2, then again we

are taking common of this x 2 terms to get the terms reduced by only 2, ok.

So, that when we will get the terms common in terms of x 2, then only I will I can come

down to these x 3 terms, ok. So, in this way we are basically doing the optimization in

the reconfigurable constant multiplier design.

So, this is just to using the binary common sub expression. So, if you can use any other

number method instead of binary, you can use this residual number system and then, you



can  apply  this  common sub  expression  to  get  the  results  more  or  you can  use  this

canonical sign digit based format number representation and then, you can apply this

common sub expression to reduce the number in a more way. So, that means this is the

way of doing or this is the techniques that means, step by step technique how we can

reduce the number? The number of this addition operation in a better way, ok. So, this is

the end of this multiplier chapter, ok.

So, from tomorrow we will or from the next class onwards, we will start to see about this

different architecture or different that means structure for doing this. That means, now

we have build up the basic operation like adder design, we have now we have gone

through the multiplier design, we have gone through the basic these algorithms part, we

have we have already gone through that. That means, the 2 x, then 2 x plus 1, then 4 x,

then log 2 base x. So, that kind of simple blocks structure efficient way to design that we

have already done. Operator wise we have already designed or we have learned the fact.

Now, based on these particular operators, now we can design the functions, ok. Now, we

will try to see the architecture of the function which are basically used different of these

operators. So, that means now what this function level architecture is. Now, I will try to

optimize and in this function level basically architecture, they require this operator level

architecture.  So, operator level architecture optimization,  we have already seen. Now,

function  level  optimization  we  will  see.  So,  that  means  there  will  be  two  level  of

optimization.

So, from the next class, we will try to see different architecture of function like FFT Fast

Fourier Transforms, then this Cordic Architecture, ok. So, what they have used and what

are the architectures available for and how you can develop the architecture for that, that

we will see from the next class onwards.

So, thank you for today.


