Architectural Design of Digital Integrated Circuits
Prof. Indranil Hatai
School of VLSI Technology
Indian Institute of Engineering Science and Technology, Shibpur, Howrah

Lecture — 32
Multiplier Architecture (Contd.)

Hello everyone. Welcome back to the course on Architectural Design of ICs. So, in the
last class we have seen Booths algorithm then sign extension; that means, template
method for reduction of the sign extension. So, after that what we have seen? Again we
have seen that; that means, block diagram representation of Booths multiplier that we

have seen ok.

Now, we will see and whenever we are; that means, after Booths multiplication or after
using of this Booths algorithm, we are getting the number basically we use Booths
algorithm to reduce the number of partial product. So, once we generate the partial
product then again I have to add those partial products to get the final results. So, those
whenever we are doing those partial products adding unit so, at that time I can use this

tree reduction method ok.

So, apart from that instead of Booths multiplication, there are tree multiplications too
like this Wallace tree multiplication and another tree multiplications are there. So, there
also we are doing this; that means, this reduction in the depth of the adder in chain

operation using this binary tree.

So, in today’s class we will see those tree multiplication or how we can reduce the
corresponding number of delays or the number of full adders, in what aspects I can

basically do the reduction that we will see in today’s class.
So, let us start with this tree multiplication.

(Refer Slide Time: 01:47)

Multiplication Architectures
Several
Next multiples 2
=1

multiple | I | | I

Full CSA
ree

Adder \ Adder /
Basic ngh‘;ll:adlx Full
binary Speed up partial tree Economize tree

Area

' NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

So, in this the first multiplier architecture, this is nothing, but the serial one so; that
means, the ones it is coming using one adder only this will be run in repeatedly, and I
will get the corresponding results ok. And if I use all the multiples together using carry
save adder tree and finally, at the very last stage I need 1 carry propagate adder. So, and

then I can get the results which is basically the full tree this is one method

And then there is another method, where I can consider partial tree; that means, the
whole tree instead of this whole tree, if I consider only partial tree and I use or I calculate
some of the those using carry save adder and I use very few parts of this partial products
and then finally, I add those in a carry propagate adder so at that time also I can do that.
So that means, the tree; that means, this multiplier are categorised into 3 different

architectures.

So, one is that where I am considering all the multiples one is that where I am
considering only single multiples, and one architecture is that there where I am
considering the partial multiples, so then if you use this particular things. So, at the time
area wise there is better, but speed wise this is poor. At this case area wise this is poor,
but speed wise this will be much more better speed means computation time. I am not
telling that speed means the frequency of operating frequency of that particular circuit,
but the corresponding that computation time for the multiplication, that is reduce in this

particular case in case of instead of this.

But in case of; that means, some part in serial; that means, in this middle case what we

are doing? We are not doing here what in the first architecture what we are doing we are
considering Single multiples and then we are serially doing and in the last architecture
what we are doing? We are considering all the multiples and then parallely we are doing,
but in this mixed culture this mix architecture what we are doing? We are considering

serial some of the things in serial and those serials are basically running in parallel ok.

So that means, mixture of this serial and parallel together gives me the benefit of area as
well as the speed both ok. So, that is why we; that means, this mixed architecture for
serial and parallel they are basically optimise in terms of power and area in with respect
sorry power and speed or the; that means, the in the in terms of computation time, for in

compared to both of this circuits ok.
(Refer Slide Time: 05:28)

o ...
Full Tree Architecture

,,,,,,,,,,,,, B Multiplier

Designs are distinguished by
variations in three elements: 2

Multiple-
Forming
Circuits

1. Multiple-forming circuits \‘

Partial-Products
Reduction Tree
2. Partial products reduction tree (Muli-Operand
Addition Tree)

Redundant resuli

Redundant-to-Binary

) , P | . 4 "',‘_‘ -~ st
3, Redundant-to-binary converter Converter

4 Some lower-order
product bits are

Higher-order

'+ NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

So, if I consider this full tree architecture. So, at that time in this tree multiplier
architecture it has 3 part one part is this multiple forming circuit. So, multiple forming
circuit is nothing but the generation of the partial products so; that means, this also can
be named as this partial product generation unit. So, those are nothing, but the AND
operation because each bit is ANDed with that means, each bit of the multiplier that is
ANDed with each bit of the multiplicand so; that means, that is why this is; that means,
that those are the multiples. So, that is why this particular circuit is named as multiple

forming circuit.

Then the next part is this partial products reduction tree. So, after generating the partial

products, what I have to do? I have to basically add those partial products. So, while we
will add those, at that time I can use this binary tree or this tree; that means, addition
operation to reduce the corresponding delay for that and the third one is that, then
redundant to binary converter. So, once I generate this then this is for; that means, the

final output generation unit ok.

So, these part is basically the main part, where I am doing this partial product reduction
tree. So, this basically; that means, this is the major research area or the focus area where
people have tried so, many that means, way out to find out that this to find so, many way

out to reduce the tree in such a way so, that the multiplier becomes high performance ok.
(Refer Slide Time: 07:40)

Tree Adder Components

+ |: Multiple Forming Circuits
- In binary multipliers, these are AND gates (i.e. a AND x;)
- Insigned Booth multipliers, these are Booth recoding blocks
— These circuits create partial products ready to be summed
+ 2 Partial Products Reduclihon Tree
— This is usually a carry-save tree (i.c. Wallace, Dadda)
~ Produces a "redundant" result (i.c. carry and save outputs)
- Some lower bits produced directly
+ 3: Redundant-to-Binary Converter
~ This is usually a fast carry-propagate adder (i.¢. carry and save lines = final output sum)

' NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

So, that means, these are the; that means, things which are related to this multiple; that
means, this tree adder components or this tree adder multiplier architecture, I have
already discussed that multiple forming is nothing, but the combinations or this. That

means, it uses those AND gate for bitwise multiplication ok.

Then partial products tree that is basically uses the carry save adder tree, that is the
examples are like Wallace tree and Dadda tree that we will see and produces a redundant
results, that is carry and save outputs and some lower bits produce directly. So that
means, that some of the things some of the bits are generated and the lower bits are
directly it comes as the output. So, after getting though; that means, the after adding

those finally, it will be of 2; that means, 2 number will be there. So, while I will get only

2 numbers. So, at the time I need to use 1 first adder either you can use carry propagate
adder or conditional sum adder for those kind of addition. So, at that time this will

basically comes to as the part of this redundant to binary converter.

(Refer Slide Time: 09:04)

1. Multiple Forming Circuits
Creates 5 partial products, 8.4 a3 az al ao
each requires 5 AND gates
- 25 AND gates X Xy X3 X X Xy
0!
ax, 27| Xy 83Xy %) a1X) 3gXg
1
X !
ax; 2 34%) 83X; Xy Xy ApXy
2|
ax, 2 ! 34X2 43Xy 3;X; a1X; agXp
3
ax; 2 Q a,X; a3X; a,X3 a1X3 agX3
ax, 2 ; a,%; asXy 3%, 41Xy agXy
A\

I+ NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

So, if we chose one example of that. So, at the time it will be much more clear to you; if
I have to multiply 5 bit 5 bit. So, I have to generate 5 partial product set ok. So, each set
containing 5 this numbers. So that means, this 5 partial products and each requires 5
AND gate to produce this each of this multiple, so total I require 25 and gates in multiple

forming circuit, this is nothing but the partial product generation unit.

(Refer Slide Time: 09:41)

. Partial Products 1ree Reduction (Wallace

+ After partial products created, must sum them together
+ Wallace tree: reduce number operands as soon as possible, 4 x 4 example below

ill

|
%557

' NPTEL ONLINE
CERTIFICATION COURSES

Wallace Tree: 2 carry-save levels, 5 FA, 3 HA, 4-bit CPA

IIT KHARAGPUR

So, after that what I said that I can use different tree reduction method for this partial tree
generation; that means our addition operation. So, in Wallace tree what we do in Wallace
tree as soon as possible, this multiples are I will get those multiples I will try to add this
ok. So, and while I will add after that at the very last stage I will get only 2 input of that
ok. So, and finally, using a carry propagate adder at this level, I will get the final results.

So, here you see I need to add for 4 cross 4; that means, this case | have to use this 2
carry save level, which is 1 here 1 here and 2 set of 5 full adder cell as well as 3 half
adder cell and 4 bit carry propagate adder at this is the carry propagate adder. And these
are the; that means, half adder and full adder cell ok. So, total 18 number. So, 5 full
adder among them 5 full adder and 3 half adder.

If I use this Dadda tree method, in Dadda tree method that is as late as possible we have
to add. In Wallace tree as soon as possible we are adding, but in Dadda tree method as
late as possible we are adding. So, there are also 2 carry save levels along with that |
have to use 6 full adder 2 half adder and 6 bit carry propagate adder in the previous case
how many I am using? 4 bit carry propagate adder and 8 adder cell among; that means,
in between 5 full adder half adder, but here 6 adder cell among them full; that means, 4
full adder cell 2 half adder and instead of 4 bit in case of Wallace tree, 6 bit carry

propagate adder I have to use in Dadda tree method.

(Refer Slide Time: 11:53)

B N A R

Y
Wallace versus Dadda Tree
Wallace Tree Dadda Tree ;

(5 FAs + 3 HAs + 4-Bit Adder) (4 FAs + 2 HAs + GURips
@@@@@@@ 12 3 4 3 71
FA FA FA HA FA FA
1 3 2 3 2 1 1 g o4 a4 9 4 i
FA HA FA HA FA HA HA FA
2 2 2 2|1 1 1 2 2 2 2 1 21

4-Bit Adder 6-Bit Adder
B4 4 4 @ #4 § i TR IR R R B N

' NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

So, then if i; that means, take 1 example of that so, at that time you can see; that means,
what is this number 1 2 3 4; that means, 3 2 1 what is this numbers ok? These numbers
are basically coming these numbers are basically coming for because what we have
considered? We have considered this 4 cross 4 multiplier right. So, 4 cross 4 multiplier,
it gives me what at the very first [will get P 1 P 2 P 3 P 4 sorry P 4 right then what I will
get? [will get sorry P 5 P 6 P 7 P 8 something like this, then P9 P 10 P 11 P 12 then P
13 thisis 13 P 14 P 15 and P 16.

So, if I just want to add, add this particular position how many numbers? 1. So, this 1
corresponds to this then at this position how many numbers? So, 2; so this number
corresponds to this then at this position how many? 3. So, this 3 corresponds to this then
at this how many? 4. So, 4 corresponds to this, then this is 3, 3 over here, 2 2 over here
and 1 1 over here ok. So, that is why this numbers are basically how many numbers I

have to add at this particular position that indicates why this numbers.

So, now if i; that means, now whenever I will consider at the time for this 2 numbers if I
have to add. So, at that time I need one half adder over here, for 3 I need one full adder
for 4 one I need 1 full adder for 3 I need 1 full adder. So, after that this will produce the
carry over at this fourth stage. So, this will; that means, forward the carry to the this
stage and this will forward the carry to this stage.

So, after that; that means, at this stage so, this carry will be forwarded over here. So, 3 1

have already consumed, but it produce 1 and the carry produce from here; that means,
from this particular level. So, that will become 2 over here. So, three I have consumed
one [have left ok. So, 1 one has been generated from this there is another one and the
carry from here. So, that number now it will become 3. So, 3 I have already consumed
and produced one. So, one over here and one carry from this particular stage. So, this
will be 2. So, here there was 2, but one carry from this particular level. So, this will

become 3 now.

So, then after that I have to use 1 half adder for these 2 full adder for these 2 half adder
for sorry full adder for these 3 2 for this half adder 3 for full adder. So, once again I
consumed; that means this half adder for these. So, if this will produce one these 3 that
one and carry from this. So, it requires 2. So, then again 2 it is consumed produce one;
one from this particular carry. So, that is 2 3 consumed by full adder produce one output.
So, carry from this particular level so, that becomes 2. So, initially there was 1 and the
carry from this particular level that will effect to the next stage. So, that will become 2
so; that means, 1 1 1 that directly come to the first products, but for these 2 I need one 4

bit carry propagate adder ok. So, this is the Wallace tree method.

What happens in Dadda tree method? So, the same numbers I will get, but here you see |
am choosing at the middle where I am getting this 4 and 3 ok. So, I have started from the
maximum position, addition at the where I am getting the numbers are maximum. So,

full adder for these 4 and full adder for these 4 at the very first level.

Then in the next so, 2 is already there, 3 is already there then here I have consumed 3 and
there is already 1. So, and it produce 1 so; that means, sum along with the another input
that is gives me 2; for this it produce 1 the carry from this particular level. So, 2 and the
carry; that means, the generated from this stage, that will come over here so, that

becomes now 2 becomes 3.

. So, in the next level what I will do? I will use for 3, I will use full adder for these two I
will use one half adder, these two I will use one half adder, these 3 I will use full adder.
So, at this particular stage; so 2 is 2 3 will produce only 1. So, then 2 produce 1 and the
carry from this particular level so that will produce 2, so 2 produce 1 carry from the other
level 2 sorry then 3 consumed and produce 1 carry from the previous level. So, that will

produce 2. So, 1 here the carry propagated from; that means, the previous stage that

becomes 2.

So, now, this 2 2 2 2 1 and 2 that I need to use and that will be using 6 bit carry
propagate adder, now I will get the corresponding digits. So, here apart from that another
thing also here we are going to; so at this particular level whenever I am considering. So,
I can use 1 half adder over here. So, if I use half adder so, at that time if I use one half

adder over here so, at that time what will become?

(Refer Slide Time: 18:44)

l Wallace versus Dadda Tree

Wallace Tree Dadda Tree

(5FAs + 3 HAs + 4-Bit Adder) (4 FAs + 2 HAs + 6-Bit Adder)
TR I R O T SIS R4 O |

FA FA FA HA FA FA
IO IEEO B 2 O B 15 2 4 g 2 4
FA HA FA HA FA HA HA FA HA

2B 2N 21 28 (L B L 22 202 Q,qt 1
4-Bit Adder 6-Bit Adder

IO RN, 5 W A 5 R W 7] LI LT »J,.\L

T TR TR A R TR U1 RS 1 TR S FR TR

' NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

It will become 1, this will became 2 at that case so; that means, these 2 will directly
come and I can use this at the time what I require? I will require 5 bit adder for doing
this, but at what cost? I have increased by the hardware by one half; that means, here
what I am doing? I am putting 1 extra half adder, but I can reduce the adder 3 by this 6
bit to 5 bit that also I can do. So, this is the basic difference between Wallace tree
method and Dadda tree method

(Refer Slide Time: 19:42)

L e R A S RS

[0,6 2,81 3,9]

|1,7f : e] 4, ll[l] I Ih,llz]

(1,6 [
[7t csa
12.8]

7 x 7 Multiplier

The index pair
[3, j] means that
bit positions
fromiuptoj

'~ NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES

So, this is the; that means, corresponding block diagram level representation or block
diagram level, this implementation technique of 7 cross 7 multiplier this using this tree
reduction method ok. So, whether that is Wallace tree or by that Dadda tree method. So,
this is at the very final level I have to use this carry propagate adder to find out the final
results. And this is nothing but whatever that in the previous example whatever we have

seen? This is nothing but the block level representation of that.

(Refer Slide Time: 20:23)

l Different Reduction Architectures

+ Tree architectures (Wallace, Dadda) are quite irregular and can cause VLSI implementation
issues

* Seek other methods for partial product reduction which have better VLSI properties
+ Two methods:
- 11:2 compressor (counter) method occupies narrow vertical slice
+ Create one column, replicate side-by-side
+ Acarry created at level i enters level i+1
+ Balanced delay tree
+ 1l inputs, 2 outputs

- 4.2 binary (ree

NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES
¢ ag

So, then in; that means, tree reduction method what I; that means, say the what I find out
that, the corresponding that methods are very much irregular in the sense. So, somewhere

I am using full adder, then I am half adder, there is the structure is not that much regular

ok. So, that is why this vlsi implementation of this particular this Wallace tree or Dadda

tree, that can create some of the issues.

So, to remove or to get out of those problems what we can use? You we can use this 11
1s to 2 compressor or we can use this 4 is to 2 compressor. So, these particular methods
basically are very much useful as this structure is regular. So, this is that means for the
VLSI implementation of those multipliers architecture that give some of the mileage or

give some of the advantage to the circuit realisation.

So, in 11 is to 2 compressor the method basically applies in the vertical direction and it
creates one column replicates side by side and a carry created at level i1 enters into level 1
plus 1, the three methods are very much balanced it consumes 11 inputs together and
produce 2 outputs finally so that means, the thing is that; that means, suppose in one case
if I am having the partial products up to P 11 that means the numbers are something like
this I need to add for this one particular position. So, at the time I can use this 11 is to 2

compressor to add this terms ok.

So, the same thing if I used 4 is to 2 binary. So, at that time this will be only P 1 to P 4
that will also produce 2 binary one; that means, sorry 2 output 1 is sum another 1 is
carry. So that means, whatever is the corresponding the; that means, the numbers or the

sum that will be produced through this 11 is to 2 compressor or 4 is to 2 compressor.

(Refer Slide Time: 23:07)

‘PP L QNI tO i, BN

In VLSI,
one column

Slice of 11:2 Counter Reduction Tree

Inputs
FA FA
[
.HIF

=

FA

T Level-1

| carries
=]

+y,=2,+3

'n
>
=

Level-2
carries

Therefore, y, = 8 carries are

needed
FA

Level-3
carries

=

=

Level-4
carry

=

) o -

FA

' NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

E.

So, if I just see the corresponding architecture; that means, the inside of this 11 is to 2
compressor. So, at that time you see that the sales are like VLSI implementation that has
coming like this. So, here initially what is there; that means, I have at this very first level
if this is the; that means, level 0. So, then 3 full adder cell, I have used where it is
consuming total 9 numbers of inputs and it produced what? 3 numbers of carries and 3

numbers of sums; so in the next level.

So, in the previous case what I says? Level, I carry that enters into level i plus 1 number
1; that means, level. So, here whatever that sum I am getting from this, I have used 2 full
adder cell one sum I have used here and one sum I have used in this full adder cell and I
have produce how many carry? So, total 3 carry. So, two carry comes for this particular

full adder cell one carry comes at this particular case.

So, then again at level 1 I am producing 2 output carry and 2 sum then again that 2 sum
again enter into 2 full adder cell and the 2 carry are basically coming to the 2 carries are
coming to the corresponding 2 full adder cell. Then another of this sum is already left.
So, that is coming to this full adder cell and another position to this full adder cell is
already; that means, left. So, another of the input which is coming over here and in this
particular case also another input is coming over here; so that means, at level 2 at level 2
again | am doing using 2 full adder cell, I am producing 2 carries and 2 sum. So, then
this sum is basically coming over here and 2 2 carry 2 carry from the previous level. So,

those 2 caries are coming in this stage

So, then again this sum is coming, this sum is coming and the carry from this particular
full adder the adder coming over here and I am getting final sum sorry final sum and
final carry at this particular adder tree. So, this structure is very much regular, I have not
used any like here full adder then half adder then carry propagate; that means, at the very
final level I have to use this carry propagate adder that is the different is. But unlike this
Wallace tree and Dadda tree method. So, if I use this for the each of this position; so if |
use this kind of structure or this compressor method. So, this is giving me one very much

regular structure, which is very much useful in VLSI architecture.

(Refer Slide Time: 26:22)

S R A

Binary Tree of 4-to-2 Reduction Modules
| 5 S I

| 4-10-2 || 4-10-2 |[4-t0-2 || 4-10-2 |

CSA

4-to-2 reduction module
implemented with two
levels of (3; 2)-counters

Tree multiplier with a more regular structure based on 4-to-2 reduction modules.

Due to its recursive structure, a binary tree is more regular than a 3-to-2 reduction tree when laid out in
VLSI

' NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

So, for; that means, 4 is to 2 reduction method. So, it will at the very first it will consider
one carry save adder tree; that means, one carry save adder level then again that sum and
carry along with the another carry that will produce 2 output. So, now, for 16 I will use
this 4 of them, then again 4 will be generated from this then again that will be. So, using
this 3 level now can now I can add 16 number of multiples using this 4 is to 2

compressor, and you see this structure is very much regular in nature ok.

So, that is why this tree multiplier which is more regular structure based on this 4 is to 2
this reduction modules and due to its recursive structure a binary tree is more regular
than a 3 to 2 reduction tree when laid out in VLSI. So, whatever we are doing in; that
means, really that in Wallace tree and Dadda tree, that are either 2 is to 2 or 3 is to 2; that

means, this carry save adder we are using.

So, 3 is to 2 means we are consuming 3 and we are producing 2 outputs basically that is
the full adder cell in half adder cell that is 2 is to 2 means 2 input it is taking and 2 output
it is producing. But here what we are doing? We are using inside of that we are using 3,
but whenever we are considering the multiple side at that time combination of 4 we are

considering and this gives me a regular structure.

(Refer Slide Time: 28:11)

‘FPR e QHs O BN

Example Multiplier with 4-to-2 Reduction Tree

M ultiple Multiplicand
generat\on —

Even if 4-to-2 reduction is implemented i

using two CSA levels, design regularity
potentially makes up for the larger

number of logic levels F —

il

Multiple selection signals

A -
Similarly, using Booth’s
recoding may not yield ‘:7

any advantage, because L{/ [s =73 ;7:/«

it introduces irregularity
G GG

e

Hal

‘ Redundant-to-bimary converter |

Layout of a partial-products reduction tree composed of 4-to-2 reduction modules. Each solid arrow represents two numbers.

' NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

So, this is the; that means, the layout of the corresponding partial product reduction tree
composed by this 4 is to 2 reduction module ok. So, as I said that this gives me a better;

that means, or a regular structure while we are implementing it in VLSI.

(Refer Slide Time: 28:39)

‘PR AHL SO BN

3. Redundant-to-Binary Converter

+ Use fast adder such as:
- Carry-select
Carry-lookahead
Conditional-sum

- Efc.

' NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

So, after that what I have to use, what I left; the third which is redundant to binary
convertor. So, I can use any of the fast adder which are any of this adder; that means,
which will be this any of this adder, where that will be carry select adder or carry look

ahead adder or carry propagate adder or conditional sum adder any of this adder for the

final 4 bit or 6 bit or 8 bit addition operation while this terms comes to 2. So, at that time;
that means, after a tree reduction the final terms will come whenever that will reduce;
that means, come to the 2. So, at the time you have to use any of this fast adder to get the
better result or to reduce the delay for that particular multiplier design what you are

intended to do.

(Refer Slide Time: 29:31)

Wallace Tree multipliers

« Use the 3:2 counters
and 2:2 counters

+ Number of levels of
=log (32/2)/ log (3/2)

=8
+ Irregular structure
* Fast
' ")_)_ Sum l“-': - sum &
Output: .f_: /
~ Camy T cany
'+ NPTELONLINE

IIT KHARAGPUR CERTIFICATION COURSES

So, this is the; that means, in Wallace tree the number of levels you can get by log of

this.

(Refer Slide Time: 29:41)

‘PR AHL O BN

Wallace Tree and Ripple Carry Adder Structure.
Of 8*8 multiplier With Pipeline

Partial Product PPO.PP1.PP2(15 downto 0)

@%&%ﬁﬁﬁﬁ%@%ﬁﬁ%ﬁwl
0

Partial Product PP3(15 downto 0

o0 o (D é}é} -8 -G
‘ l Critical Phth
P16 P15 pl4 PI3 P12 PIl PLO PO P8 P7 P6 Ps P4 P3 Pz Pl IL
- NPTELONLINE
IITKHARAGPUR CERTIFICATION COURSES

So, this I think I have already discussed. So, this is the using carry ripple adder also you
can do. So, we have we have used mostly we have used what for carry save adder and we
use carry propagate adder while we are considering this tree reduction method, but ripple
carry adder also you can use, but if you use ripple carry adder. So, at the time you will
get the delay will be more so that means, to reduce to improve the corresponding delay
or the; that means, the speed of operation. So, that for we have to use this carry save

adder or you have to use this carry propagate adder.

(Refer Slide Time: 30:14)

‘EPRB AP BD

Comparison of Multipliers

T Pige Seral
Amy Molfed Boat Modlified Booth Wal
L LEa Wallace-Tree Multplier | "y 00U HATHEE Parallel Behavioral Muliplie
Multipier Multipier Tree Mulipier Ml

Area - Total CLB's (#) 3076.50 2649.50 3325.50 267250 490,00 2993.50

Maximum Delay D(ns) ELR] pIXE] 1893 18.53 107.52(3.36x32) 1933

Total Dynamic Power P (W) 152 633 146 641 028 6.4

Delay ‘Power Product (DF)

3 5 ¥ 7 3 5
W) 26898 15464 L4 1187 3062 30758

AreasPower
Product (AP) 12820 1677160 2479393 mnm 139.54 18665.07
W)

AveasDelay
Product (AD) 110E+03 GATESO4 630EH04 R 49504 S2TEHM LASE40S
(i)

AveasDelay!
Product
(ADY)
i ns')

IE06 1.58E406 1.19E406 9,18E405 S66EH6 7.28E406

I NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

So, this is the comparison tables of all the multipliers we have discussed till now. So, we
have used or we have; that means, seen Array multiplier, we have seen this Booth
multiplier we have seen this Wallace tree multiplier or else we can use this hybrid of
this; that means, Booth algorithm and then Wallace tree multiplier, and we have seen this
serial parallel multiplier. And this is behavioural multiplier means that nothing but the
generic multiplier architecture that is that is the shift and add based multiplier. And this
is basically the PGA implementation and along with that it shows that in serial parallel it
consume the more. That means, the lesser area in compared to all of the architecture ok;
that means, we are generating the in a serial fashion we are using. So, that is why the
time required and the computation time requirement is also more, if you see this table for

that particular case

The then the next is that the Wallace that means, the modified Booth and Wallace tree

multiplier that you; that means, requires 2672 and the Booth multiplier requires 2649
whereas,; that means, the lowest possible; that means, if I consider this parallel
architecture, this gives me the lowest possible the number of area requirement, but here

the delay requirement is 24.43, but the delay requirement for this is 18.53.

Here what we are doing? In Booth multiplier the area requirement is lesser, in Wallace
tree this is the first addition operation; that means, the delay is reduced in compared to
the Booths. So, while we are hybriding these 2 architecture; that means, I will get the
benefit of area as well as I will get the benefit of delay which I am getting in case of
hybrid multiplier which is Booth plus Wallace tree. So, 2672 just minimal increase from
this 2649 number and here 18.93 and here it is 18.53; that means, just a minimal increase
in the delay too. So that means, I am getting 1 optimize circuit if [use hybrid architecture

in this case.

So, rest are the delay power; that means, area power the power wise this circuit is also
very good in compared to this, time requirement is much more higher on this and
behaviour multiplier it; that means, consumes also a; that means, very large number of

area as well as power as well as delay.

(Refer Slide Time: 32:56)

R RN AN A N RIS

Array Modified Booth | Wallace-Tree Mndlﬁﬂl: TwEn s Behavioral
it T TS Booth-Wallace | Scrial-Parallel Multipli
Tree Multiplier | Multiplier it
Aren Medium Small Large Small Smallest Medium
Critical Delay Medium Fast Very Fast Fastest Very Large Large
Power S .
Z . Large Medium Large Medium Smallest Medium
Consumption
Complexity Simple Complex More Complex | More Complex Simple Simplest
Implement Easy Medium Difficut Difficut Easy Easiest

' NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

So, in that means, overall overview if I say that area wise this modified Booth and
Wallace multiplier, that are that are there is small and delay wise this is the fastest,

power consumption wise the smallest is the parallel pipe, but as delay is very much

higher; that means higher side. So, this is the on the power side also we are getting much

more savings in this hybrid architecture.

So that means, still now we have seen this unsigned multiplication. So, this is the; that
means, this end of the unsigned multiplication, from the next class onwards we will
signed multiplication techniques. It is the, this is not the end of this unsigned
multiplication architectures, the as I said that there are different several research; that
means, literatures are available on the internet or that is available in the Google or IEEE
or any other scientific sites. So, if you are interested to design one. That means, if you
are focusing on to design one high performance multiplier architecture, then please

follow those literatures and you can also discuss via discussion forum.

Thank you for today’s class.

