
Architectural Design of Digital Integrated Circuits
Prof. Indranil Hatai

School of VLSI Technology
Indian Institute of Engineering Science and Technology, Shibpur, Howrah

Lecture - 28
Multiplier Architecture (Contd.)

Welcome back to the course on Architectural Design of IC’s. So, we are discussing in

the last class about the Multiplier Architecture. So, we have seen this, the basic

multiplication operation which is the serial multiplier architecture. So, apart from that in

combined with parallel multiplication operation; that means, parallel as well as this

serial, how we can do that type of architecture also we have seen ok.

So, then again what I said that there is the basic multiplication of operation is nothing but

this shift and add ok. So, that has the basic fundamentals of any multiplication operation.

So, that type of multiplier architecture now we will see; so, where if this is nothing but

that shift and add ok.

(Refer Slide Time: 00:57)

So, here you see I am having 2 inputs which is A in and B in ok. So, each of if I consider

each of them are like a 8 bit ok. So, I have I am having 8 bit register over here for input

A in and I am having 8 bit register for B in.

So, based on that I am having one adder over here one adder over here ok. So, where this

adder will again one of the input to the adder that is the corresponding shifted bit of this

B and this another; that means, sorry not shifted bit of this. So, this shifted that means,

this addition operation they are basically controlling the, this B in. How? What is the

how basically this circuit is operating that I am just coming later. So, I am having 2

registers of A in and B in and I am having one adder ok. So what I need? Shift and then

add ok.

So, then addition operation this after this getting the sum they will be stored somewhere

that is this particular registers. Again what I basically need to add? What I need to add?

Ok.

(Refer Slide Time: 02:47)

If I consider this particular case, so, if I need to; that means, do this addition operation,

suppose A into B I have to do; A of 8 bit and B of 8 bit right. So, at that time what will

happen? Initially what we will do? I have to I will get A, ok. Considering suppose if I

consider all the bits of B are 1. So, at the time, how we can do? At the in next I will get 2

A then I have to add 4 A then I will get 8 A then I will get 16 A, something like this I

will get. That means what?

I am shifting the A in for 1 bit left shift and if this bit is 0, if any of this bit is 0, so at that

time it will consider not A it will consider or it will choose 0. So that means what I am

doing? Suppose for this particular case, so, initially it will not be A, it will be 0 and in

the next if it is 1 so at the time I have to get 2 A and that will be come to the adder; that

means, this 0 will be come at first then that will be added with 2 A.

Then in the next if this is 1, so at the time this 0 plus 2 A, is already saved in C register in

the previous particular; that means, architecture. Then if I consider this 1 so, at that time

what will happen? This will be shifted by 2 bit, 2 bit left shift; that means, at the time I

have add 4 A. If this bit is suppose this bit is, suppose this bit is 0, so, at that time this

will be added with is 0. So, that is why if I just go back this particular case, so you see

whenever this basically what is happening? This is the input B in, B in ok. So, B in is

loaded over here and A in loaded over here right.

So, initially, if I add for this previous example what I consider that let us consider the

first bit is 0, ok so that means, this bit is 0. So, that will come over here and it will choose

0 instead of A. So, then 0 is the 1 input and it is connected to the feedback; so that

means, now 0 plus 0, so this will 0 will be stored over here ok. So, then again that bit

will be; that means, if the next bit is 1, suppose this is initially it was 0 then it is 1 ok. So,

then 1 coming over here so, it is choosing this particular A in this particular A in and

then 0 that is again added with this particular case and here whenever we are choosing

this A in over here, not that means, based on this what value of A. So, what is the weight

of this that I need to calculate whether that will be 2 A or that it will be 4 A?

So, here using this MUX, I can compute that ok, so for 0 this will choose 0. If this bit is

1, so at that time it will choose 2 of A; that means, whether the A in will be just shifted

by 1 left shift and that will come over here and that will be stored in this particular

register ok. So, in this manner now in this manner that will be set and, how we are doing

this particular? Suppose for this case if I consider suppose, if I consider suppose for A

that is 11111100 and let us consider 10101010 ok. So, initially what is happening? 0 is

coming. So, this is filled with all 0. So that means, this register C at the very beginning it

is filled with all 0 ok.

So, then it is choosing A; that means, this 1 ok. So, that now or this is 0. So, this 0 is

basically coming over here ok. So, then this bit is shifted; that means, at that time this

REG A sorry REG B will be 01010101 ok, then 1 is basically coming over here and it is

choosing this A. So, here initially it was 0.

So, at the time this REG C is nothing but your 11111100 ok. So, then again this 0 is

basically coming over here. So, register B will be 00101010, then again it is 0; means it

will choose 0. So, at that time 0 added with this. So that means, now REG C will not

change its value correct, so that means, it will remain 6. Then again this 0 will come over

here; so that means, now register B, the value of register B that will be 00010101, then

again this 1 will come out and again it will choose A, at this particular case. So, at that

time what will be the values of register C? That will be A plus A; means what? That is

twice of A ok. So, A plus A means twice of A; so that means, now it will be sorry, it will

be 111111000 ok, so; that means, now this 1 will this 1 will come over here ok.

So, now, again this 0 will come; so; that means, now at that time the register B that will

be 0000 then 1010. So, then again 0 means register C will remain same. So, it will be

come over here. So, register B again that will be changing its value to five 0 then 010

sorry 101 ok. So, then again A one of this will come ok, so that means, again I have to

add this with A again. So that means, now C register will be thrice of A and this will be

in this manner it will be this C will be finally, that will be of 4 A, here it will be 4 A and

all these bits will be 0 ok.

So, now if you if I; that means, the results whatever is the remainder over here ok. So,

that is the results of 15 down to 8 and the results over here which is remaining over here.

So, that is the results 7 down to 0. That means what? Now, if I just do it in other way;

that means, whenever I am multiplying; suppose this is A, I am multiplying with

whatever what is the value of this? That is 1 then 2 sorry 1 then what is the value of this?

01010101. So, the value of this is 1 plus 4 plus 16 plus 32; so that means, total 53 ok.

So, in this manner now if I just; that means, calculate ok. So, actually I have to draw it

will not come as 4. So, finally, what value I will get over here ok, so that will be shift in

as I am doing the shifting operation in this particular as in this case; so, it will give me

the corresponding weight of 53 as I am accumulating A over here in this case. So that

means, whenever I will shift this based on this will be shifted and then again it will come

over here ok. So, in this manner I can do this shift and add operation.

Actually, if I consider one another example at the time it will be much more clear. So,

whenever we are following, so at that time you choose any number over here and you

chose any number over here and you do; that means, how this operation basically is

happening and then you see whether you are getting the correct results of that or not ok.

(Refer Slide Time: 13:57)

So, suppose let us consider another example. If I choose only this value 3 values if I

consider for a smaller value I think at that time I do not need to that much of. So, if I

consider 3 over here. So, at a time what will be the register C? So, the register C will be

it is 1 and it is it will chose A; so that means, it will be A and A means what? Whatever

is the values of value of these that will now come to this particular position right ok.

So, then what will be the register B? If I choose that as suppose this value of this is so,

the register value of; that means, this will be all 0 and that will again shifted to this

particular case ok. So that means, now again this will be added. So, initially 1 it is

choosing this A ok, then again this is 1 then again that is register A will be A plus A that

will be of 2 A.

Then again in the next this, what will be the register B value? If that is 0, then that 0 will

come over here and then again it will try to push this 1 and then again it will come down

to this, it will choose at the final this register C will be added with A plus A plus A and

all the corresponding B in value that will be all 0’s or that whatever is the values of this

that A in will try to fill this position ok.

So, in this manner in this fashion we can; that means, do this shift and add multiplication

ok. So, it will be better if you choose your own particular numbers over here and then

you try to calculate the corresponding multiplication operation ok.

(Refer Slide Time: 16:40)

So, then so, we have this synchronous shift and add multiplier. That means, whenever we

are doing this multiplication shift and add, so, at that time there are 2 type of multiplier

with one is synchronous another one is asynchronous ok. So, in synchronous add

multiplier is very much used; that means, common in used. So, they have 5 states which

are idle, initial, tests, add and shift and count.

So, in the idle state it starts by receiving the start signal; that means, whenever if this

starts signal will be 1 or high, it will start of the operation of the corresponding

multiplication. And in the initial case the multiplicand and the multipliers are loaded into

the load register and a shift register respectively. That means what? In each case this A

whenever I in initial signal is high, so, the A in and the B in that will be loaded into 2

corresponding register. Then this test signal, the LSB in the shift register which contains

the multiplier is tested to decide the next state ok.

(Refer Slide Time: 18:20)

So, if LSB is 1, then next state is to add the new partial product to the accumulation

results and the state machine transits to shift and count state ok. That means, what I said

that whenever; that means, this LSB of this is 1. So, at the time what I have to do? I have

to do this addition operation and shift and count; that means, this shift and count also I

have to perform right.

Then in shift and count if LSB is 0, then two shift register shift they are contains one bit

right and the counter counts up by one step. After that, the state machine transits back to

test state. When the counter reaches to N, a Stop signal is asserted and the state machine

goes to the idle state and in idle state in the idle state, a Done signal is asserted to A

indicate the end of the multiplication operation ok. So that means, now what is

happening? How many times I am the basically doing this 1 over here, I am getting 1

over here? So, that is being counted.

(Refer Slide Time: 19:59)

Why I need to count that? Because based on that what I said? That I have to add

something like these A and then 2 A and 3 then 4 A something like this I have to add.

So, how many times I am basically adding, so, that I have to do. So, this is what I am

getting over here? In this particular case, how many times? So, if I am getting 3 times 1

over here, so that means based on this I will get the corresponding weight. So that means

this is what? This is 2 to the power 0, then two to the power 1, this is 2 to the power 2.

So, total 7 number of shift I have to do it in A or 7 times I have to add A something like

this ok.

So, that is why based on this sorry based on this particular case now I can; so, this is the

controller design; that means, if this is the condition if the LSB of B is 1 then add and

then shift and count in shift and count if the LSB is 0 then do the that means, go to the

that means, the counts up by one step. If it the counter reaches to N; that means, what is

the, that N is the number of bit or if it is I in this particular case that we have consider

that weight. So, if it is reaches to n, so, at that time stop this signal and whenever this

stop the signal; that means, finally, the results is done you just break the loop or come

out to the output ok. So, these is the shift and add multiplication operation.

(Refer Slide Time: 21:59)

So, here you see this is the multiplicand then there is a n-bit adder and then there is this

shift and add control logic. So, this is the corresponding A and this is the corresponding

this B, here it is considered as Q. So, whenever this Q 0 is basically it is checked in each

of these things. Whenever this is 1, so at the time it will follow that logic what I

discussed and if it is 0 then need to be followed different logic ok. So, based on that it

will be just added something like this in a repetitive manner ok so, this is nothing but a

synchronous shift and add multiplier, the same thing ok.

(Refer Slide Time: 22:52)

So, and then what I said that I am having 2 type of multiplication, what is synchronous

another 1 is asynchronous ok. So the, this is the basically this computation time

requirement in synchronous as this is happening that means, all the things are happening

clockwise. So, that is why I have to wait for more time in synchronous, otherwise

actually I have not discussed the asynchronous circuit here, but if you follow the

asynchronous circuit for this; that means, some of the changes or some of the that

shifting operation that you have to; here what is happening?.

Basically this in particular clock, it is finding the LSB position of B, then not finding it is

checking the position of B and then it is tries to do this shifting operation and count

operation; that means, added by this 1 and again it is also doing that addition operation 2

on a same clock edge. But in asynchronous design, you can do it in a different way. So,

that means that will not happen in one particular clock cycle ok. So, that is why this time

requirement in asynchronous case that is lower than the synchronous case ok. But then

what is the problem in asynchronous case?

So, you can get; that means, the whenever you are doing operation, so at that time you

can get more violation; that means, more violation means, if one of the signal is not

coming at to any particular gate at proper time, so at the time there will be mismatch in

the results. So that means, if the data is not properly aligned, so, at that time you will get

erroneous result or; that means, garbage value at the output, which will not happen in the

case of synchronous circuit, but which can happen or which there is a high probability to

for happening the that type of things in asynchronous circuit.

But what I am getting? I am getting the competition time is much more lower than the

synchronous circuit ok. And apart from that the circuit chip area that is also more in this

case of asynchronous circuit as we are putting some extra logic to precompute the values

ok. So, this is the comparison between this synchronous and asynchronous circuit. Then,

so these up to this is this shift and add based multiplication. So, what we have learnt?

Serial multiplication, then serial plus parallel multiplication, then shift and add based

multiplication. So, in shift and add based multiplication there are synchronous

multiplication and asynchronous multiplication, then there are this array multiplication.

(Refer Slide Time: 26:04)

So, array multiplication is also the regular structure which is based on this shift and add

based algorithm ok. So, here the main thing is that this addition is mainly done by carry

save algorithm or carry save addition operation and then sign bit extension results in a

higher capacitive load and slows down the speed of the circuit. So that means, why I

need to if I doing if I am doing this sign multiplication, so at that time I have to consider

this sign bit extension; otherwise, I do not have to ok. So, whenever I am doing this

using this array multiplication I can do sign multiplication as well as unsigned

multiplication, but whenever I am doing a unsigned multiplication at that time I do not

need anything. But whenever I am doing sign multiplication, so at that time I have to be

bother about signed extension.

So, how we do signed extension that we will come later ok. But whenever we are doing

this sign bit extension in array multiplication, so at that time; that means, I am putting

extra overhead to the circuit ok, which basically degrades the performance of the or there

that is the disadvantage of this particular architecture ok. So, we will discuss more on to

this on the next class.

Thank you for today.

