Architectural Design of Digital Integrated Circuits
Prof. Indranil Hatai
School of VLSI Technology
Indian Institute of Engineering Science and Technology, Shibpur, Howrah

Lecture — 22
Efficient Adder Architecture (Contd.)

Welcome back to the course on Architectural Design of ICS. So, in the last class, we
have seen that how this conditional sum adder has been that means, what is the
architecture for that, how we can; that means, develop the architecture of conditional
sum adder and the basic starting; that means, the idea has started from the this carry

select adder operation ok.

So, we are doing what? We are putting a redundant computation to reduce the number of
delay by putting extra hardware to the corresponding circuit ok. So, that we have already
seen in the last class. And we have seen that why we can we say that this is the most
possible the fastest adder among all the adders what we have seen till now because that
only the delay level is only one full adder cell plus the multiplexer the number of

multiplexer delay is that is log 2 base n ok.

So, where n is if | consider 16, at that time 4 multiplexer delay; if I consider, that means,
consider 8, so, at that time 3 multiplexer delay. So, within 8 to 16. So, any of this value
for n value, it will be 4. So, from; that means 4 to as the 8 ok. So, 4 to 8 any value for
that or 4 to 7 if I consider. So, for 4 to 7 any value if I consider. So, at that time this
corresponding multiplexer number of multiplexer will be this 3 number of multiplexer,

for within 4 b i t, I need 2 multiplexers something like this I need to.

So, this is, but the thing is that whenever we have to design for the disadvantage of
conditional sum adder is that, as we are increasing the number of this multiplexer and the
circuit becomes much more complex whenever we consider more number of bits ok. So,
these as though it follows one regular structure, but if we consider; that means, more
number of bits, at that time the connection becomes very much; that means, complicated
as there are so much, so, many that means, components which you need to wire, so, that
becomes very much complex whenever we are we consider more number of conditional

sum adder bit ok.

So, for that reason, there is another adder are actually not for the that reason; there is a to
reduce actually we know that that carry look ahead adder, we generate and then
propagate the carry and based on that we calculate the sum and carry for each of the
stage ok. So, to reduce the, that means, and in the expression what we have seen that this

Ciplus 1 that is equals to g i plus p i into C i ok.

So, yeah actually C i plus 1, that is equals to g i plus p 1 into C i. So, if I consider that I
equals to 7, so that means, C i that you has to consider that has to for the last term, it has
to consider thisp 7, p 6, p 5, p4,p 3, p 2, p 1, p 0 and then the input carry which is ¢ 0.
So that means the levels that will increase if my I restrict the fan in. So, at that time, the
levels is increased because of this particular ANDing operation which is which I required

for this g and multiplication of g and p.

That means, the generation of the sorry this propagation of the carry ok. So, to reduce
that there is one that means, that adder has evolved which is known as Ling Adders ok.
So, then how it reduces this a number of that means, terms in carry look ahead adder,

that we will see.

(Refer Slide Time: 04:36)

‘FPB L AHL LS 5 BO

Ling Adder

Variation of CLA: Ling's equations:
pi=1a;®b =at b,
gi=a;b gi=4jbi
Cop=2,%p,-C . o =g, %1,
S =p®C, "- S, =0, @ H +egt. H

Ling, IBM J. Res. Dev, 5/81

- NPTEL ONLINE

I KHARAGPUR CERTIFICATION CQURSES

So, this is the CLA; that means basic CLA operation. So, the p 1 signal thatisai1 XOR b 1
and giis aaidotbi. Whereas, C i plusl that has been generated based on this g i plus b
1into C 1 and s 1 is generated from p 1 XOR with C 1 but according to lings equation, they

have modified the equation in such a way, so that it can reduce the number of terms

which are related which are coming for these particular things. So, it says that this t 1
equals to a i plus biand giequals toaidotbiand this H1i plusl equals to giplusti

minus 1 dot h i ok.

So, initially what was there; that means, that was p 1 was a 1 XOR b 1, but here this is OR
and that is this t 1 minus 1 and this s has been calculated based on this t i XOR with H i

plusl plus g iinto t i minus 1 into H 1.

So, this is the modified equation. If you see if you just that means, compare this two
equation, it is same like the generation of the; that means, propagation of this generation
and propagation of the carry where this is basically modified with h, this ¢ is modified
that means, changed with or renamed as h here and s has been this is not XOR operation
this is with C 1 only; this is XOR with this H i plus 1 along with OR with this giti

minus 1 in and H 1 ok.

(Refer Slide Time: 06:40)

S - S & BE B\]

Ling Adder

Variation of CLA: Ling’s equation:
Cr+l = gr‘ t gr'Ci + pl ‘C!
3
=g+ +p)C
HJ :gi+tr—l'Hr—l
Cn=8:+14-C
Ling uses different transfer function.

Four of those functions have desired
properties (Ling’s is one of them)

- " NPTEL ONLINE

I KHARAGPUR CERTIFICATION CQURSES

Then what is that; that means the function of this. So, variation of CLA is that C i plus in

Ciplus 1 equalstogiplusgiCipluscpiindotCiok.

So, if I just rewrite it in this term. So, at that time g 1 will be g i plus g i plus p i dot C i.
So, this g 1 plus p i, that is as this t i ok. So, and this according to this ling equation, so

this H i can be written as this g i plus t i minus 1 dot H i minus 1. So, here you see, ling

uses different transfer function; four of this function have desired properties, ling is one

of them.

(Refer Slide Time: 07:35)

‘EPL L QHL O

Ling Adder
Conventional:

Cy= 83+ 1,8, + 13,8, + ;11,8 +»{;£3llll!0(’vin

Ling:
H,=g,+1,8,+ 1,118, +L,41,8, + L4, C,

Hy=g,+g, t 4,8 + 648, + 1,u1,C,

b
~ L faninofa_

' NPTEL ONLINE

I KHARAGPUR ; CERTIFICATION COURSES

So, in the conventional method, if I just for C 4, if I consider 4 bit. So, at that time if you
see at the last term what I said that at the last term what I need I need this here if I
instead of that p, if I just replace that with t so; that means, I need t 3, t 2, t 1, t 0 along
with this C in which is the first carry input bit. But according to the ling equation, if I just
write this, so at that time H 4 will be written as t 2, t 1, t 0 and C in. So that means, these
5 requirement in conventional carry look ahead adder that has been reduced in ling

equation where this is basically; that means, here if the fan in is 5 here, the fan in is 4.

So, if the fan in is 4 here and the fan in of 5 here, that means, we can reduce the delay.

(Refer Slide Time: 08:43)

L e S

Advantages of Ling's Adder

* Uniform loading in fan-in and fan-out

¢ Hy; contains 8 terms as compared to G16 that contains 15.

¢ Hj can be implemented with one level of logic (in ECL), while G, can
not.

(Ling’s adder takes full advantage of wired-O\ﬁ, of special importance when
ECL technology 1s used)

'+ NPTEL ONLINE

T KHARAGPUR CERTIFICATION CQURSES

So that means, then the advantage of Ling’s Adder? Uniform loading in fan in and fan
out this H 16 contains 8 terms as compared to G 16 that contains 15, ok. So that means,
if I consider this g sorry, this C 16 at that time I need according to the CLA, I need the
term as 15. But here in according to this new equation of H using this 8 number of terms,
I can compute this H 16. Then, H 16 can be implemented with one level of logic while G

16 cannot.

So that means, then obviously, as I am I can increase or sorry, I can decrease that number
of logic level that means, I can improve the corresponding speed or the operating

frequency of the adder design using this lings equation.

(Refer Slide Time: 09:46)

L - R

Advantage of Ling's Adder

* 32-bit adder used in:[BM 3033, IBM 5370/
Model168, Amdahl Vé.

* Implements 32-bit addition in 3 levels of logic

* Implements 32-bit AGEN: B+Index+Disp in 4 levels
of logic (rather than 6)

* 5 levels of logic for 64-bit adder used in HP
processor

* '~ NPTEL ONLINE

IT KHARAGPUR CERTIFICATION COURSES

And this is basically, this 32 bit adder, this Ling’s Adder that has been used in IBM 3033
model. And then; that means 3 bit addition in 3 levels of logic and then 5 level of logic
for 64 bit adder used in HP processor. So that means Ling’s Adder is very much useful in

the earlier days.

(Refer Slide Time: 10:30)

B e
A Subnanosecond 64b Adder S. Naff21ger,
‘ ISSCC’96

Using Ling’s Equations

Why is the H4 equation a good thing?
[If Py = Ay + By, then Gy =>Py
[} Use this reduction to define Hy in terms of the in
put operands, not P and G
H4 = A3B3 + A2B2 + A2A1 B1 + B2A1 B1 + A2A1AoBo +
AgB1AoBo + B2Aq AoBo + BgB1AoBo
‘H4 =g, +g,ti,8,+ Z2t1g0‘
Calculate H, in 8 terms, fanin of 4 vs. 15 terms fanin 5
for a similarly flattened C4 or one gate delay vs. three

So, earlier days, that processors accomplished this computer microprocessor ok. So, then

this is this one work which is basically if you just want to that means, know more on this

Ling’s Adder architecture. So, you follow the work on this; that means, which is

approved; that means, published in international solid state conference in 1996 ok.

So, there you will get how that means, the equation has been developed and how the, that
means, from this particular equation, how the corresponding architecture has been

developed, that you will find that means, in details in this particular paper ok.

(Refer Slide Time: 11:09)

‘RPI e 4l O 0

A Subnanosecond 64b A ISSCC96

Using Ling’s Equations
H4 = A3B3 + A;B5 + AbA1B1 + BoA1B1 + AA1AQBg +
AgB1AQBQ + BzA1AQBO + BgB1AoBo
H4 Hy=8,+8,+1,8 + 1,18,

R e -2
A2 "I Al "I Hl"i |_Bl]_‘F|3

Bz'_lBl._IBB._l

AB J S. Naffziger,
I ISSCC% I

So, that, this is the transistor level implementation of lings equation, ok.

(Refer Slide Time: 11:13)

‘PRSP AHL LSO B

A Subnanosecond 64b Adder ISSCC96

Using Ling’s Equations

Afastgroup of 4 propagate is also necessary to combine
for the next level (16) of carry generate:

l4 = PoP1P2P;

If P = A + B, this can be done in one gate delay using
"wired—or” techniques also.

S. Naffziger,
ISSCC*96

' NPTEL ONLINE
I KHARAGPUR \ CERTIFICATION CQURSES

And we all this, you will get from this particular paper. So, I am not going into the
details of that then. So, that is the advantage of that means, Ling’s Adder. And what is
that? That starting point of that is the carry look ahead adder that then the present days
basically, we use this Prefix Adders or The Parallel Prefix Adders; that means, here what

we do; that means, suppose I need to add two numbers a and b.

So, at that time in the in the that means, conditional sum also what we do we pre
compute those values and then we add or actually in condition of sum, what we do we
pre compute those values considering 0 and 1 and then based on the multiplexer we

basically select with signal I have to pass at the output level.

And in carry look ahead adder what we do, we basically; that means, initially from the
bit; that means, input bit we basically generate and then propagate the carry we have two
logic, one general for generation of the carry; one for propagation of the carry then based

on the equation now we are trying to calculate the sum and carry output.

So, here also the same thing ok, so it has; that means, this parallel prefix adders it has

that means, this pre processing and post processing that means, scheme.

(Refer Slide Time: 12:55)

E R S RN AT A A R

Method 1:
Step 1: Pre-processing g =ash p=a8h
Step 2: Prefix Computation 1™ {1 By]

Step 3: Post-processing ¢ =Gy
S=p0c,

Method 2: ik

Step 1: Pre-processing 7=98% Step 2: Prefix Computation

k=a+b j&. fi=k |
7 Gl KpaGpasye otherwise|

6= (&, fi=k |

. i
Step 3: Post-processing S A i oibertia]

' NPTEL ONLINE

IITKHARAGPUR 3 CERTIFICATION COURSES

So, it has follows two method ok. So, in one method, there are the follows three step; one
step one is Pre-processing. So, pre processing in pre processing generate the carry using

this particular equation and propagate the carry using this particular equation and then

you compute the prefix. So, how you can compute the prefix? The prefix can be
computed using g i k. So that means, this is nothing but a actually we will see this the

corresponding graph of this different adder architecture parallel prefix architecture.

So, here actually we will get one node or this will follow one regular structure ok. So,
considering we have to generate this g i k based on this particular equation. If i n k k
both the values are same. So, at that time g 1 will be the g i k value and if it is not if 1 and
k, they are not same. So, at that time I have to do g ij plus pijin dot g j minus 1 k ok.
So that means, this is the coordinate of g and p which are basically presented within

these parentheses.

So, then again for p, this is for g and this is for p, again we have to follow another
equation. So, for I equals to k that will be p i or otherwise it will be p i j dot p j minus 1
k. So, then again I need, so once this pre prefix computation is done based on this post
processing of g i and p i, then we can go for this post processing for calculating the
corresponding final carry in and sum bit. So, the C i value is G i1 0 and this sum is p i

XOR with C i minus 1 ok.

So, this finally, will generate, so that means, this is a simple logic which will generate
the corresponding sum and carry for each of this stage. So that means, now if I consider
7 bits, so, at that time this will varies from 0 to 7. Then again, there is another method
where in this method one we are taking g i and p i. So, in another method, we have to;
that means, take or we can take 3, 3 variables that is g 1, p 1 and k 1 where k 1 is nothing

but this XNOR operation sorry NOR operation of aiand b 1.

And then, for prefix computation we will use this k i instead of p i in this case we will
use this k i1 as by following this particular equation that is g i k that is giand g1 plus k
bar i j dot g into j minus 1 to k. If for 1 equals to k that is g 1 for i not equals to k, then
this equation and for k i k that is for i equals to k k i; that means, the bar of or the
complement of k 1 otherwise k 1j dot k i j minus 1 to k otherwise. And then again finally,
follow the same post processing for final computation of the for each of this position or
the each of the stage; that means, again same if the carry that means, 1 is vary varying
from 0 to 7 so; that means, then for 7 this will be this sum and carry that will be

computed ok.

(Refer Slide Time: 17:15)

‘EPR L IHI A B

Associative property and idempotent property

(G.F),) (G.P),, =(G.F),, (P,

Associativity allows pre-

Associative property computation of sub-terms of
(G.KJM*(G,K)[I” (G.k’)[_HJ'«[L?‘}()M the prefix equations
(G,P), ,*(6: P}y = (6 Py Idempontency allows these sub-
Idempotent property terms to averlap, which provides
(0.5), +(0.K) =(c.K) some useful flexibility in the
(] () ek

parallelization

- . NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

So, then whenever we are computing these parallel prefix adders, so at that time it has
two follow two; that means, property it has to follow. So, once or; that means, there are
basically two properties which are related to this parallel prefix adders. So, one of the
property is Associativity and another that means, of the property is Idempotent property
ok. So, the Associative allows pre-computation of sub terms of the prefix equation.
Whereas, this idempotency allows these sub terms to overlap, which provides some
useful flexibility in the parallelization of the corresponding circuit ok. So that means,
how we can that means, define this associativity property. So, if I am having this g p, this

is the dot operation with this g p of j k.

So, here you see that this is the within this parenthesis that that means, corresponding
term this is h to j and this is j to k, then I can write h to i to i to k; that means, this j can
be replaced as with i. And for this k dash that means, this is for method 1 and this is for

method 2 where this I am, for method one I am using p for method 2, I am using k.

So, for method 2, this is g k bar h j. So, j to k, so, again it can be written h to 1 then i to k
ok. Then for idempotent that means, idempotent this property, I can write this as the
same; that means, where this here for this method 1, it will consider p; for method 2, it
will consider k with the equation is only different ok. So, these two properties are related

to parallel prefix adder computation.

(Refer Slide Time: 19:41)

‘ePREIHL A BN

To simplify the representation of G and K or P, an operator called as dot operator represented
by “* 'is introduced to create group generate and group kill bar

(G Py =(G.PY, *(G.P) g (G)y =G * G K Yy

Method 2:
Method 1: B

© . NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

So, whenever we are that means, telling this dot operation, so, what does it means? This
simplifies the representation of g along with k or p p for method 1, k for method 2, an
operator called as dot operator represented by star is introduced to create group generate

or group kill bar.

So, how we can that means, in method 1, in method 1, this is the dot operation; in
method 2 this is the dot operation, ok. Here you see this is the; that means, in method 2,
this is the dot operation in method 1 this is the dot operation ok. So, what I need is
basically, so based on this we have to; that means, what we are doing this prefix we are

basically pre computing and that is basically work or that is represented by one node.

Now, we will follow the; that means, one regular structure to compute the corresponding;
that means, the bit or the corresponding; that means, the sum and carry value for each of

this bit position ok.

(Refer Slide Time: 21:02)

e B A R R

klan
The black circles indicate SR
the dot operator. The gray s 15141312 1110 9 8 7 6 54 32 10
circles represent the semi- ¢) %; N #; b b
dot operator / X % / 1 / / /
; é i ‘ age
The white nodes represent the ; | 1l | =
input nodes éi /ﬂ | ¥l | | s
; | i i |
number of computational nodes i i varaid
is given by(n/2[|og2n]) ‘ ‘ { ‘ E ‘ ((I { Stage 3
| i | |
optimal depth given by log,n l’) d 4(:%/1/1(i i Stage 4
OUlPUISG 15 14C13812011C10C Cg C7 €5 5 €4C3 C2 1 Cp

-~ '* NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

So, how we can do that? Suppose I am having this 16 bit inputs or 16 bit that means,
addition I require. So, this blank box, this white color box, they represent or this is
nothing but this is the DFG of these parallel prefix adders which is known as Sklansky
Adder ok.

So, here this basically represent these input nodes, this black boxes this black boxes they
are represented basically the dot operator. So, dot operator we have already seen that g
and k p for method 1 and g and k for method 2, ok. So, these are the dot operators and

these are the semi dot operators ok. And based on that, we can get the final output ok.

So, I need this four stage if I am considering this kind of this; that means, whenever this
will; that means, the carry from here that will effect this, then carry from there that will
effect this. So, then again this carry can be come to here. So, this is one of the
architecture if you follow. So, what we have to do? Here, we have to compute the prefix
based on method 1 or method 2. So that means, this dot operators or this particular semi

dot operators based on the equation what we have seen in the earlier section.

So; that means, now what does it means, this basically needs two that means, the
coordinates of 2 as if I represent this as a 2 D graph. So, at that time, so, in this direction
and in this direction I need to; that means, represent this particular point or this particular

node ok. So, that is why, based on this from which node to which node will be

connected, so that we will get from the corresponding information which we have

already mentioned earlier, ok.

So, here in this case if we consider this particular Sklansky adder method or this
Sklansky, this is a DFG of this Sklansky adder, if we follow that, so the number of
computational node that will be n by 2 log 2 base n if n is 16, so then here 8 and for this
is 4, so that means, total number of computational node will be 32 and the optimal depth

will be log 2 base n; that means, there is 16 means 4.

(Refer Slide Time: 24:20)

SR E RN - A B

Kogge-Stone Adder

The black circles indicate L

the dOt Operator. The gray k Inputs 15 1.4 13 !2 110 9 8 7 6 5 :i 3210
circles represent the semi- A

dot operator ;

The white nodes represent the
input nodes

number of computational nodes
is given by (n[log,n]-n+1) | ;
optimal depth given by log,n i | } i

|
e e i bl T b bt
MPUS €45 €14C13C12C011 C1g Cg C5 7 Cg C5C4 €3 Gy C1 Cp

!~ NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

Then there is another method which has been proposed by this two particular scientist
this; that means, mister Kogge and Mister Stone. So, they have named this that means,

adder architecture as Kogge-Stone adder.

So, there are that means, you see more of the that means, this corresponding; that means,
operators are overlapped to each other ok. So, whenever here that means, overlap to each
other means, we are increasing the corresponding number of this computational node.
Though the that means, optimal depth, if I consider the previous case the optimal depth
remains same ok, so the number of these black dots and these gray dots that increases

along; that means, in this particular Kogge-Stone adder.

So, the here the number of computational node is n log 2 base n minus n plusl. Then

again to improve the corresponding performance of this Kogge-Stone adder, we have

another architecture which is this Brent-Kung Adder. So, here what is that means,, how it
has been generated, by setting the fan out to 1 and another that means, problem with this

is that here more wiring is wrings are there.

(Refer Slide Time: 25:55)

araliel Frerix ers. brent-nung

* Set the fan-out to one
* Avoids explosion of wires (as in K-S)
* Makes no sense in CMOS:

— fan-out =1 limit 1s arbitrary and extreme

— much of the capacitive load is due to wire (anyway)

* [t 1s more efficient to insert buffers in L-F than to use B-K
scheme

'+ NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

So, to reduce the number of wire, we have that means, come to this adder architecture

which is Brent-Kung adder ok.

So, this basically avoids the explosion of wires which basically happens in that means,
Kogge-Stone adder and it is more efficient to insert buffers in; that means, in compared
to this ; that means, according to this Brent-Kung adder scheme we can insert the buffer

more efficiently ok.

(Refer Slide Time: 26:33)

Brent-Kung Adder
The black circles indicate HIERIne A
the dot operator. The gray Inputs 1514 1312 1110 9 8 7 6 54 3 2 10
circles represent the semi- a? 5 b ¢ T ' b 4
dot operator / ; /
; / Stage 1
The white nodes represent the i /k i oHhe2
input nodes . g// I”j{: stage 3
number of computational nodes #,_a—-? P Haged
is given by [2log,n-2] Pt | ~ Stage 5
optimal depth given by (2n-2-[log;n]) ! '/ "/lg ‘4/' % ¢} | sams
i
<L C15C14613C12C11C19Cg Ca 7 Cg C5 C4C3 €2 €169

- . NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

So, then again if we just follow the circuit that means, the architecture for this Brent-

Kung adder. So, here you see, this is the architecture for this Brent-Kung adder.

Here the number of that means, the these nodes that are decreasing, but here you see at
the num that means, with this; that means, as the number of nodes are increasing, that
means, decreasing the number of stage that are basically increase, sorry this as the
number of nodes are decreasing, but the number of stages are increasing for this Brent-
Kung Adder ok. So, this is the that means, the computational node is required this
number and the optimal depth which is can be derived from this particular equation and n

is the that means, the bit consider for the adders or the addition operation.

(Refer Slide Time: 27:33)

‘RPL e ALt O B

Parallel Prefix Adders: Han-Carlson

* Is a hybrid synthesis of L-F and K-S
* Trades increase in logic depth for a reduction in fan-out:
— effectively a higher-radix variant of K-S.

— others do it similarly by serializing the prefix computation at the higher
fan-out nodes.

* Others, similarly trade the logical depth for reduction of fan-out and wire.

' NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

Then again whether actually we have this Han-Carlson that means, this algorithm ok. So,

this basically is one this is one like hybrid architecture.

(Refer Slide Time: 27:51)

Han-Carlson Adder

The black circles indicate
the dot operator. The gray

Inputs 1514 1312 1110 9 8 7 6 54 3 2 10

circles represent the semi-

dot operator / /f T/ / / /
Stage 1

The white nodes represent the

input nodes (/‘/ /)' /'/ Stage 2

number of computational nodes 2Kg ﬁ,l(,xg/{/ Stage 3

is given by (n/2 [log,n) Bo=ccs=2y

is given by) e e s

optimal depth given by [log,n+1] //“' //.] Shge’s

Outputs
C45C14C43C12511 C10Cg C5 C7 Cg C5 C4C3 C2 €1 Cg

'+ NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

And here what we do we basically do, to reduce the number of stages we use at the very
beginning, we use at the very that means, in the first we use a one different; that means,
this Kogge-Stone architecture and that in the in the that means, lower portion we use
different method to reduce the number of states which are the that means, this

disadvantage of Brent-Kung adder. And here you see, by this particular Han-Carlson

adder, so we can reduce the number of computational node by this and the optimal depth

by this ok.

(Refer Slide Time: 28:36)

R RN =N AN A

The black circles indicate Ladner-ﬁ%f:her Bl

the dot operator. The gray

Inputs 191413121110 8 8 7 6 54 3 2 10
; P |

circles represent the semi- 9 o) 00 0 5
dot operator [/ / / /
/' Stage 1

The white nodes represent the i [k | v
. —— Stage 2
input nodes ,——/T/ (

| "/ / Stage 3
!

v

i
number of computational nodes] | ‘
i

is given by (n/2 [log,n]) ABUp
/ 1/E é Tt

C15C14C13C12C11C10C9 CgC7 € C5 C4C3 C C1Co

Stage 4

e

optimal depth given by [log,n+1]

¢ J' Stage 5

Outputs

'+ NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

So, then we will actually this Ladner that means, land Ladner and Fisher Adder, this
basically L and F is Ladner and Fisher Adder; that means, that is the hybrid of this Han-
Carlson that means, adder is the say hybrid of this L S and K S these two ok. So, what is
there in this Ladner-Fisher Adder?

So, in Ladner-Fisher adder we it has follows one different topology where the number of
computational node is n by 2 log 2 plus n and optimal depth is log 2 n plus 1. So, what

this; that means, the number of state; that means, remains same that is 5.

(Refer Slide Time: 29:19)

NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

So, there are again that means, this we have already that means seen this.

(Refer Slide Time: 29:23)

M. Lehman, “A Comparative Study of Propagation Speed-up Circuits in Binary Arithmetic Units”, IFIP Congress,
Munich, Germany, 1962.

Fig, 2. Pycamid cany (eight bits) (Ex, 9),

NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

(Refer Slide Time: 29:25)

‘eP e Al

Structural Comparison of 8-bit Parallel Prefix Adders

Semi-Dot
Brent-Kung 4 7 4
Kogge-Stone 10 7 3
Han-Carlson 5 7 4
k Ladner-Fischer 5 7 3
Sklansky 5 7 4

' NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

So, if we just that means, see that; that means, what are the that means, the difference in
this particular adder design if you consider this 8 bit parallel prefix adder considering

different type of adder architecture.

The number of dot, dot means that black box or the black circle and where semi dot
means this gray circle the number of requirement along with this logic depth for 8 bit
parallel prefix adder for Brent-Kung the dot are 4 semi, dot are 7 and the logic depth of 4
for Kogge-Stone, the dots are more and this similar to as there are more overlap ok. So,
that dot are 10, semi dots are 7 and the logic depths that has been reduced that is 3 by
putting that means, parallel computation then Han-Carlson that is 5, 7, 4; for Ladner-

Fisher that is 5, 7, 3 and this Sklansky that is 5, 7 with 3 sorry 4.

(Refer Slide Time: 30:32)

Structural Comparison of 16-bit Parallel Prefix Adders

Dot Semi-Dot
Brent-Kung 11 15 6
Kogge-Stone 34 15 4
Han-Carlson 17 15 5
Ladner-Fischer 17 15 4
Sklansky 17 15 5

' NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

So, this is for 8 bit and then for this is for 16 bit, if you see that which one is the best one
from this, if I just that means, try to calculate this is a minimum number which I am
getting for that means, that is the Brent-Kung adder, but the logic depth that has been
increased. That means, whenever I need area as my major constraint. So, at that time |
will follow Brent-Kung adder; that means, I have the liberty or I can; that means, I can

that means, leave this speed operation.

That means, the speed is not that much; that means, major constraint at that time where
area is my major constraint. So, at that time I can follow this Brent-Kung adder
otherwise, if we if area is my that sorry not that major constraint, but speed is my major

constraint. So, at that time we have to follow this Kogge-Stone architecture.

(Refer Slide Time: 31:29)

‘ePL e QLSO

Structural Comparison of 32-hit Parallel Prefix Adders

Dot Semi-Dot
Brent-Kung 26 31 8
Kogge-Stone 98 31 5
Han-Carlson 33 A 31 6
Ladner-Fischer 33 31 6
Sklansky 33 31 5
TORARAGPR | CEATFCATON COURES

So, this is for 16 bit and this is for 32 bit.

(Refer Slide Time: 31:34)

‘FPS b AHL LS

Structural Comparison of 64-bit Parallel Prefix Adders

1}
Brent-Kung 5 63 10
Kogge-Stone 316 63 6
Han-Carlson 129 63 7
Ladner-Fischer 129 63 7
Sklansky 129 63 6
' NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

So, here you see that is 5 for 64 bit that is 16 because that is log 2 base n. So, n 64
means, this will be 6 for 128, this will be 7, but the number of dot operation that are on

the higher side in compared to this particular 5.

(Refer Slide Time: 31:52)

R =N A S RS]

Performance comparison of 8-bit Parallel Prefix Adders

in using 180 nm Technology

Average Power-Dela

Adder Name Powtﬁ' Debay Product ;

W ™ X0 o)

BrentKung | SL7AS36 | 053 274250408
Kopge-Stone | 6443130 | 035 22550955
Hn-Carlson | 5465521 | 053 289672613
Skhansky | S404176 | 035 18.914646

Ladner-Fischer | 5174552 052 26.9076704

it ied FERYLIE Y 14 4140400

NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

So, then if we take this power and delay if we take this power and delay of the
conjunction of this particular 5 adder architecture and at that time you see this Sklansky
Adder, that gives you the lower number lower number of; that means, a power delay
product whenever we are that means, developing 8 bit parallel prefix adder using 180

nanometer technology.

(Refer Slide Time: 32:19)

Performance comparison of 16-bit Parallel Prefix Adders
in using 180 nm Technology
Average 5 Power-Delay
Adder Name Power Delay Product

awy | ™ X 10" oules)
BrentKung | 1022749 | 088 | 0001912
KoggeStone | 1409152 | 053 | 7468505
Han-Cufson | 1115113 | 084 | 93669492
Sansky | 10099 | 050 | 550495
Laduer-Fischer | 1018946 | 084 | 85591464

NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

Then this is for 16 bit parallel prefix adder using 180 nanometer technology again, you

just see that the Sklansky the delay is basically. So, based on this average power

consumption is 110 and the corresponding this power delay product that is 55, which is

the minimal 1 in compared to the other 4 adder architecture ok.

(Refer Slide Time: 32:53)

Knowles 1999

Structure Buffering Delay Length Transverse wire flux
(ref invs) (um) By level Total

Ladner-Fischer (fig 2) [16,8,4,2,1] [2,1,1,0,0] 137 38 1.2222] 9
- [16,4,2,2,1] [2,1,1,0,0] 13.2 38 [1.4,4,22] 13

- [16,2,2,2,1] [2,1,1,0,0] 13.0 41 [1.84,22] 17

(fig 6) [4.4,2,2,1] [1,1,0,0,0] 13.2 35 [4,4,422] 16

. [4,4,22,1] [1,1,1,0,0] 12.7 39 [4,4,4,22) 16

[2221,1] (1,1,1,0,0] 121 48 [8.8,4,4,2] 26

1il1M 1,1,0,0,0] 121 63 16,16,8,4, 42

Kogge-Stone {1 11,1 ,1; {1 4,1 ,o.o} 1.8 63 %1 6,1 5.5,4,:} 42

R

* Delay is given in terms of FO4 inverter delay: w.c.
(nominal case 1s 40-50% faster)

+ K-Sis the fastest

+ K-S adders are wire limited (requiring 80% more area)

+ The difference is less than 15% between examined schemes

NPTEL ONLINE

I KHARAGPUR CERTIFICATION COURSES

And, then, so, these are the; that means, the structure how we can select.

(Refer Slide Time: 32:57)

Pyramla ﬂaer:

M. Lehman, “A Comparative Study of Propagation Speed-up Circuits in Binary Arithmetic Units”, IFIP
Congress, Munich, Germany, 1962.

Flg. 2. Pyramid cany (eight bits) (Ex.),

NPTEL ONLINE

I KHARAGPUR CERTIFICATION COURSES

So, this is the pyramid adder, another adder, how we basically do and we have already

seen this.

(Refer Slide Time: 33:08)

‘PPREQEL O BN

Possibilities for Further Research

+ The logical depth is important (Knowles was right)
+ The fan-out is less important than fan-in (Knowles was wrong):

— Itis possible to examine a variety of topologies with restricted and
varied fan-in.

* Driving strength and Logical Effort rules were overlooked and at least
neglected:

— Itis possible to create number of topologies taking LE rules into
account.

— It s further possible to combine the rules with compound domino
implementation taking advantage of two different rules governing
“dynamic” and “static”.

s It is still possible to produce a better adder !

' NPTEL ONLINE

I KHARAGPUR CERTIFICATION CQURSES

So, the possibilities for further research is that the logic depth is very much important.
So, how we can reduce or whether I can reduce the number of logic depth more that is
one that means is very much; that means important aspect. So, you can that means,
further you can just look into that how we can do that. Then fan out is less important than
fan in because if we restrict the fan in so, at that time the levels will increase. So, it is
possible to examine a variety of topologies with restricted and varied fan in. So, that is

also another that means way direction of further research.

Then driving strength and the logical effort rules were overlooked and at least neglected.
It is possible to create number of topologies like this logical rules into account and it is
further possible to combine the rules with compound domino implementation taking
advantage of two different rules governing dynamic and static. It is still possible to
produce a better adder. So that means, there is a, so, considering this particular that
means, adders things we can take; that means, different different combination of this

prefix addition ok.

So, different what will be the combination, that means, what will be the optimized
combination of so that I can get in terms of minimized number of this dot and semi dot
operation along with the logical depth will be on the reduce of on the lower side ok. So,
both the things if we can optimize at that time obviously, I will get one very good adder

architectures ok. So, along with this, this is the end of this adder architecture. In the

future, that means, we will again start with a new chapter in the next class, which is this

different.

We will see now this multiplier architecture, different multiplier architecture that we will

S€€ SO.

Thank you for today.

