
Architectural Design of Digital Integrated Circuits
Prof. Indranil Hatai

School of VLSI Technology
Indian Institute of Engineering Science and Technology, Shibpur, Howrah

Lecture - 20
Efficient Adder Architecture (Contd.)

Welcome back to the course on Architectural Design of ICS. So, in the last class, we

have seen that how we can optimize based on the restricted fan in and fan out option. So,

how we can and that means, optimize the CLA whenever CLA in terms of. That means,

whenever we are generating or the carry or we are writing the expression or

implementing the expression for c carry, so, at the time how we can define the fan in for

each of the levels. Whether, I can that means, if I restrict the fan in, so, at the time a

obviously, it will increase the level.

So, what will be the group size and then what will be the level size based on that we are

having we have seen four kind of topology. And based on that we have seen that the

variable size implementation of the carry logic is it is better than the in terms of delay

consumption, it is better than the fixed implementation of the same carry expression.

So again today, we will start with another architecture of this adder which is carry select

adder. So, we will start this carry select adder by this name of if this carry select adder, it

says that we have to based on this selection of the carry, can I do this addition operation;

that means, what is the intention to make it faster.

(Refer Slide Time: 01:57)

So, how can we do this carry or what is that means, working principle of this carry select

adder? So, in the carry select adder, in the ripple carry adder, what we do? Basically, we

in the in each of this case we consider this full adder cell then this carry is basically

propagated and at the output we get the final carry out. And each of this particular case,

we got sum bit.

But in this carry select adder, what we do instead of that we do parallely to that mean

ripple carry addition operation. For what, one considering this carry input as 0 and

another one considering this carry input bit to 1. That means, why I need to do that

because in case of this ripple carry adder; that means, if my carry input bit.

(Refer Slide Time: 03:05)

If there is 1, suppose I need to add 1 1 0 0 along with this 0 0 1 0, so, if I just what to add

if my carry input bit that is 0. So, at that time it will just this. But if my carry input bit

that it goes to 1. So, at that time it will be something like this; that means the value will

be changed ok. So, in this particular case, in this particular case, what we are doing? At

the very last level, at the very last level we are; that means, we have.

(Refer Slide Time: 03:56)

Suppose a 16 bit, this is the 16 bit carry select; that means, select adder architecture. So,

16 bit carry select adder, I have to design.

So, at the time how can I design or how I can start with the design? That means, now

what we are doing; we are making the 4 bit group. So, each of this is 4 bit and this is also

4 bit. So, at the very last of this; that means, had the very last group what we are doing,

we are not following the corresponding carry select addition, what is the; that means,

main idea behind carry select operation selection adder operation; that means, operation.

So, that we are not doing.

So, what we are doing, from here, actually again if I just want to; that means, go back to

this. So, if I just this if I just divide. So, at that time means what, I am having these

particular four blocks. So, this carry is basically coming over here. So, this is but nothing

but this ripple carry adder.

Now, based on this what I said, if I just want to add this particular value, suppose 1 0, so,

in 1 case, if my carry input bit is 0 and if my carry input bit is 1 so, whenever this is 0, at

the time what value I am getting I am getting 14 for this I am getting 15. So, that means,

here from the beginning, I am calculating this 14 and 15 from the beginning.

Now, based on this carry input bit, sorry carry output bit of this particular LSB side, now

I will choose what value I will select. So that means, if this bit is 1. so at that time I will

select this 1 1 1, over here if this bit is 0. So at the time, I will go with 1 1 0 for this

particular case.

Now, as this is also not producing any carry over here. So again, these value again it will

have two of this sum bits. So, 0 means I will choose this particular case I will not choose

this case. Again for this is also, there are having four of these sum bits and it is carry

output bits; so, based on this carry output over here. So, it will select the corresponding

things.

So; that means, what is the; that means, main; that means, fundamentals here? The idea

behind this is that whenever this is over; that means, now I can I am doing what, I am

parallely basically computing all the values of this, sum bit of all this and computing

parallely ok. Considering because carry in that should be 0 or 1, so, both the case I am

computing at once; that means, all the input bits are available to me, right.

So, in ripple carry adder, what is the problem? Unless and until, I am getting this carry

input over here, I cannot start this operation. Again unless and until I am getting this

carry over here, I cannot start say its operation, but here what we are doing from the

beginning or by putting two as we know that carry input if it as it is a binary in that we

signal. So, it will have either 0 or 1. So, considering that fact from the beginning

parallely, all these blocks are running; that means, for 0, computation it is doing; for 1,

considering 1, carry input bit to 1 also it is doing.

Now, the this the thing is that, whenever I will get this carry input bit there is a mux;

based on the mux, so, I will get two of these sum. If I just go back to this, so that means,

I will get for this A 7 B 7, I will get two sets of this particular sum over here. So, the

sum, this is basically the sum for this considering carry equals to 0 and this is the sum for

considering the 1. And again for this, this is for 0, this is for 1.

So, now if this bit is this carry out put bit if it is 1, then it will choose all the sum bits of

all the some bits from 1 only. And again what is by is the carry output from this

particular block, this is for 1, this is for 0. So, for this carry output, again it will come

over here for the next 4 bit group.

So, again this will choose based on the same logic. So that means, here then what is the

problem here; the problem is that we are exploiting; that means, we are increasing the or;

that means, we have increasing the speed or we are basically decreasing the critical path

in corresponds to a carry look sorry this ripple carry adder by exploiting more number of

hardware or more number of adder. That means, here what I have done? I have just

replicated the 4 bit full adder twice.

So; that means, initially for ripple carry adder, I was needing only one set of this, but

here I am needing two and then again I need at the output, I need some extra multiplexer.

But here, the delay if I roughly estimate, I can reduce thus, so that means, initially what

we are taking not actually this is roughly estimation. I am not telling this is the final one

because as there is the mux. So, again it will take some of it is time.

So, I can reduce the corresponding delay. So, the maximum delay will be what? It will

comes from this particular case to. So, the carry is basically now traversing to these

particular paths, right. So, this is that means, corresponding delay for this particular path.

So, here you see this is not that and this is connected to only; that means, one of this

particular multiplexer; that means, as this is running in parallel. So, this bit is basically

connected. So, here I will get this 4 full adder delay and here, 1, then 2, then 3, we are 4,

then 5, then 6, then 6 plus, 6 multiplexer delay so that I will get for this particular circuit.

(Refer Slide Time: 12:16)

So, if I just go to the next slide, so the same thing here you see in the; that means, in the

up this in the previous slide, what you see that, we are considering 4 of this. Again, what

we can do? We can just do it in a different way. That means, we can select in case of

carry skip adder what we have seen we have seen that in the middle portion, if we chose

the size of; that means, the more the size we can we get or we can reduce the delay

critical path in a better way than if use fix number of; that means, groups for each of this;

that means, fixed number of bits for each of this groups.

So, in this, here also we are doing this grouping right. In this particular case, can I do

something do that kind of things to get the reduction in critical path. So, here also we can

do. So, here would what we are doing? Actually, in the last if I just go back to the

previous, so what I said that for this, I need 4 full adder delays and then I need this total

6 multiplexers delay.

Then if I just reduce this only 2 full adder cell; that means, the last level, then that 4 full

adder cell delay, that will be reduced by 2. So, then that 2 is now passes through then 2,

then 2, then again that is 3, then there is 4, then there is 5. So that means, the now the

group is like something like this 2, 2, 3, 4, 5. That means, now the delay will be

something like this, what here 2 fuller add delay then 1, 2, 3, 4, 5, 6, 7, 8, so 8 number of

multiplexer delay we need to use.

So, now another thing also we can do, what we can do. So, here we are using this; that

means, the last 4 bit that we have just initially, we have just distributed it in two way that

was 2, 2. Then this is another 4 group that we have developed divide it something like

this 5, 4, 3. So, 12 bit was there that has been divided in 5, 4, 3 or else you can try with

that 4, 4, 4; here 2, 2 that also possible. That means, now it depends; that means it is

basically.

(Refer Slide Time: 15:29)

How this 16 bit operation, how we can distribute this? You can distribute via like 4 plus

4 plus 4 plus 2 plus 2 or you can distribute 5 plus 4 plus 3 plus 2 plus 2 or you can 4 plus

4 plus 4.

So, that means, this 16 bit that you can group in combination of different groups of

different that means, each group of different number of bits, that you can consider. So,

whenever you will consider this, so considering this means, you will get for different-

different of this that means, topology you will get different-different delay. And among

them, which one will be the; that means, we from for what combination you will get

lesser delay, lesser delay that will be your ultimate combination for implementing the

carry select adder.

But here, what I said that I am increasing initially if I used this 16 full adder cell, here I

need to use, here I need to use how many; that means, let considered for this particular

case, if I just exclude 2 then for 28. So, 30 full adder cell for this particular combination.

So, for 4, 4, 4, so how much, so in it that means, 12, 28 number of full adder cell; so if I

consider this, so at that time 5, 4, 3, 2, 2. So, then that means, 2, 3 5, 10. So, here for here

also that is 30 full adder cell, ok. So that means, now I have increased this full adder cell

to 30 or 28 or something along with this, I need more of the multiplexer over here.

So, if I am considering 2; that means 12 plus 1, 2, 3; so total 15 number of multiplexer

again I need. So that means, I am increasing or I am as I said that whenever I, I need to

gain something at that time, I have to lose somewhere. That means, exploiting extra

hardware to the circuit I can reduce the delay in a very much in a certain way or that

means, the delay reduction here that is in a good number.

So, based on or this following this particular that means, this logic or this idea, again the

people have developed another architecture which is the that means, the fastest adder and

possibly the fastest adder which the conditional sum adder. So, that we will see that

architecture, we will see now.

(Refer Slide Time: 19:03)

So, here you see carry select adder that combination of 2 bit two 32 bit variable, this

adder in select mode. That also if we can do, but, so what I said that based on this carry

select; that means, adder logic operation, we develop this conditional sum adder and this

is the possibly the fastest adder. And if you just want to that means, know more on this

condition some adder. You just follow this particular that means, papers which is in

published in ieee transaction on electronic computers in 1960.

(Refer Slide Time: 19:50)

So, here what we actually we see that, for this input of x and y, considering this carry

input of 0 and carry input of 1, I can get two different set of carry; that means, bit and

sum bit; for this is for carry input 0 and this is for carry input 1. So that means, for this I

am getting this c m sorry, this c m 0, c m 1, s 1 and s 0. That means, where is the

difference here? So, in the in these particular case, I am not considering bitwise. That

means, here I am considering 2 bit at a group; that means, this is a full adder 2 bit full

adder, that is 2 bit ripple carry adder, this is a 3 bit ripple carry adder, this is 4 bit ripple

carry adder, this is 5 bit ripple carry adder. But I have not considered individually to this

particular full adder cell.

So, in conditional sum, so for each of these bits I can get to; that means, different set of

sum and carry value considering the carry input to 1 or 0. So, that is why this is a

conditional adder considering this x and y are the 2 inputs and I can get for this is for 1,

sum this carry 1, and sum 1, this is for considering, this carry output is 0, there is sum c 0

and s 0.

(Refer Slide Time: 21:42)

Now, if I just want to, that means, design one 8 bit conditional some adder then how can

I draw that or how can I design that 8 bit conditional sum adder? So, this is the final

architecture of 8 bit conditional sum adder. So, if I just explain or if I just want to. That

means, how this is basically works, what is the working principle of this particular 8 bit

conditional sum adder that you see, at the very of this at the very beginning of this, this is

x 0 and y 0 and from here, considering the c in, I can get the sum 0 right.

Now, this will produce the corresponding c 1 over there right. Now, in the next, what is?

What happens I am having this 2 number of full adder, this conditional adder considering

1 for 0, another for 1. Why I have not consider for this particular LSB position because

this c in is the external signal which is directly coming to this particular point.

So, that is why I do not need this particular multiplexer operation over here. But I do not

know here, what we are basically following, we are initially guessing that mind or we are

predicting the sum and carry value considering the carry input bit to 0 1’s and 1 1’s. So,

we are just getting the or obtaining the results of carry and sum in this particular from

this 2 particular full adder cell.

So, whenever these full adders that means, the carry out from this full adder cell is 1, this

is 1 means, it will choose the full adder output the carry and sum output from this

particular full adder cell ok. That means, whenever we are computing the corresponding

sum and carry, at the time I am also computing the sum and carry for this y 1 and x 1 too.

Only generation of this is now taking the decision which signal whether I need to pass

the full adder cell from this particular; that means, path or I need to pass the signal from

this particular full adder cell, whether that is for 1 or for 0, we are taking the decision

through this multiplexers.

So, from here, now I am getting the s 1. So, in the next what from this again I will get the

sorry. So, in the next, I will get this sum that means the carry from these particular

blocks too. So, whenever we will consider the second case, in the second case, I am I

have to consider this I this for y 2 and x 2; that means, here we have considered x 0, y 0,

then we have considered y 1, x 1. Then here, for y 2 and x 2 again, we are considering

this 0 for this 0 and 1; for y 3, x 3 also 0 and 1, we are considering right ok. We will

actually it needs more time to complete this particular that means, circuit for explanation.

So for today, we will just stopping and the lecture at this point. So, in the next class, we

will start from this particular point on this conditional sum adder. We will see initially,

we will see this how this architecture basically works. And then we will take one

example and how the data is basically. Finally, compute the final result that also we will

see in the next class.

Thank you.

