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Lecture – 35
Numerical Evaluation of Wire Antenna Currents

Welcome  to  this  NPTEL  lecture.  Today,  we  will  see  the  Numerical  Evaluation  of

Antenna Currents. Actually, earlier while discussing wire antenna for long dipoles we

discuss that the current distribution is approximately or that time we said that it  was

sinusoidal, because if we are feeding the dipole at the center, and the currents conduction

current  should go to 0 at  the two extremes,  and at  the feed point  that  should go to

maximum. So, it was said that it will be sinusoidal.
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But people have found out experimentally also. And also by other techniques that it is

not exactly sinusoidal. Look at the top graph it is for a lambda by 2 dipoles. It is a thin

dipole, because the usually dipoles radius is quite small in terms of lambda. And here in

the x-axis is plotted the distance from the center, so that means this is the central point,

and this is the top point. And the current distribution is symmetric in both the poles.

So, you see that we have plotted the sinusoidal one by the red color, but actual current is

not exactly. It is the maximum is not at the center first thing, because peak is somewhere

else. And also you see that typically it can be said exponential, but it is not exponential



there are deviations. And, now if this is have a profound impact, if we try to find out the

input impedance of the dipole, because at the center you see that by sinusoidal thing

whatever we will expect the current that is not same.

So, if we, because what will be the input impedance at the feed point, we will find out

the applied voltage divided by the current. So, if the current is different then, the input

impedance will be difficult. Basically, the near field effect is different for if we assume a

sinusoidal  distribution,  and a  actual  distribution  like  this.  The second graph is  for  a

lambda dipole that means full wave dipole. Again you see it is a thin one.

Here also you see that sinusoidal is as expected, but the peak is at a different point. And

most importantly you see that here the center fed at the centre the sinusoidal current

distributions is 0 so that should give you input impedance should go to infinity which is

not the case. No is in no dipole gives me infinite input impedance. We have seen the

input impedance is something like some complex term, but the radiation resistance is

something like 73 Ohms so near about that etcetera.

So, you see that, but that actual distribution that is not zero. So, you can easily get the

exact one. Now, how to get this type of exact current distribution; that we will discuss

actually; so we will today’s topic is Numerical Evaluation of the Dipole Current.
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So, let us say that we have a dipole. Now, actually in the earlier discussions we always

neglected the finite radius of the dipole, but actually if I want to make a dipole, it will be

a cylinder. So, any practical cylinder will have a finite radius I can keep it small, but that

means on the surface there will be currents. So, currents will be distributed. If the dipole

is made from a perfect conducting elements or any practical elements, then there will be

currents in the circumference.

And so, it is not always that the through center the current is going, so that is one thing.

Another  is  we are a  having a  finite  gap  at  the  feed  point,  now that  gap we do not

consider, because we consider that the dipoles centre is also at the center, but actually

dipole center is a delta up, and the delta down so that is not model. Today we will take

that also into account. And so, a dipole is something like this, and there is this gap in this

gap we put let us say a some feed whose job is to put the voltage generator. So, I can say

that this voltage let us say in phrase voltage.

And let us say this gap is something like delta let me call. So, I can say that from the

central point to the top this is l by 2, similarly so that means, this length of the top pole

that is l by 2, the length of the bottom pole that is also l by 2. Now, previously I help you

to recall that we have taken the current distributions. While we discuss sinusoidal we

have taken that this is a z I naught sin k l by 2 minus z dashed for 0 less than equal to z

dashed less that equal to l by 2, and in the bottom half it is I naught sin k l by 2 plus z

dashed sorry minus l by 2 z dashed l 0 that was our earlier thing.

Today, we will see that for a center fed and finite diameter, where this is not exactly true.

Though we will say that as we have seen that sinusoidal typically we can say, but it is not

exactly  true.  So,  if  you want  the  radiation  pattern,  if  we want  the  input  impedance

etcetera to be exactly determined, because that is very necessary for circuit  matching

etcetera so, this is true.

So, there are two techniques more or less similar, but there is a big difference. So, those

techniques we will see. The first one scientist Hallen he first found out these, so that is

why this formulation of the analysis that is called Hallen’s formulation which we will

see. So, this is not our current distribution we, now say that we do not know what is the

current. So, we will determine the current.
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So, we will write the Hallen’s formulation is a very well known technique very much

used. Actually previously people used to have some iterative techniques to solve that, but

today with the advancement of various numerical techniques that also we will discuss

probably in the next lecture, that there is a technique which is very much appropriate for

this  type  of  current  distributions  problem,  or  in  case  of  determining  currents  for

scattering problems or any radiating problem that is called moment method that is an

integral equation method that also we will see.

So, this Hallen’s formulation has assumptions. So, the there are first one is that the radius

is  finite  radius  of  the  radiating  structure.  So,  we will  say  usually  they  call  that  the

diameter that is greater than 0.05 lambda. Then the dipole is long. So, l is greater than a,

and I am not writing much greater, because this is applicable for all these cases, but l

should be greater. Actually and also we required that a should be much less than lambda.

Now, these actually what happens if I have a practical cylinder like this; so there will be

currents in the sides also in these top caps of the cylinder top and bottom caps there will

be current, but by this assumption actually we are neglecting that cap. So, we will say

that only the current is on the cylindrical surface not on this planar caps that is why these

assumptions. Now, on this we will put the boundary condition.

What are the boundary condition? You see always these boundary conditions that one is

since this is made of perfect conductors, so we will say the first boundary condition is



total tangential electric field will be 0 on cylindrical surface sorry cylindrical surface.

This is always 2 plus please remember here it is not true in the gap it is not true, but on

the cylindrical surface. The second boundary condition is obvious that our current we do

not know the current here, but at the endpoints this will go to 0. These are the 2 boundary

conditions sorry we will enforce.

So, what is Hallen’s formulation, as we have seen that since this is a perfect conductor.

So, we assume that there is only electric current. So, we can say that M is equal to 0 here,

and our current density J that we will write as J z. Now, this is an assumption actually

that I will come that. So, Hallen’s formulation says that current is typically going like

this actually it is an equivalent thing there are currents here. So, he assumes that the since

it is a symmetrical structure. So, summing that I can have a equivalent current on the axis

of the a things.

So, if I have this, then we can write that what is the electric in terms of the applied

electric field E A. Please remember those A is come from that magnetic vector potential.

While we discuss the general solution that thing so we can write E A is equal to minus J

omega A minus j by omega mu epsilon del cross A. On the cylinder on the cylindrical

surface I can say applied electric field is 0, because we are not applying any electric field

there. So, this boils down to that I would not go these boils down to that vector potential

satisfies this differential equation. This we have seen many times.

So, we will have to solve this equation.
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Once we know the vector potential we can easily find J so that will be. Now, we can say

that. J z is symmetrical in z or z dash that that means j z z dash is equal to j z minus z

dashed, because of the structure the excitation is symmetrical, so bipolar excitation, so

these. So, this tells me that A z is also symmetrical in z dashed that means A z z dashed is

also A z minus z dash.

So one solution, because A z is satisfying this differential equation: one solution is A z A

z z is equal to minus j mu epsilon A 1 one cosine function plus to have this symmetry,

and this you can put it here, and see that it satisfies. This term is coming due to this k

presence of k you are getting this term. So, A1, B1 are unknowns so, A 1 and B1 are

constants  to  be  determined  form boundary  conditions.  I  have  2  unknowns  I  have  2

boundary conditions. So, I will be able to do that.

Now, I will come to this solution a bit later. First let me were, also let me evaluate this.

So, now, let us look at the gap now, at the gap at the gap. Let me see this is the structure.

So, at the gap the applied voltage is v i. So, there we can write the differential equation

del square A z plus del z square plus k square A z is equal to or I can write d, because

there is only one k square A z is what, if you put it j omega mu epsilon E A. This is at the

gap.

Now, let us integrate this whole thing over the gap. So, we are integrating it minus delta

by 2 to delta by 2 square A z d z square plus k square A z d z is equal to minus delta by 2



plus delta by 2 j omega mu epsilon E A d z ok. Now, I can easily integrate this, these are

all constants. So, it is basically let me write it that.
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Right hand side is j omega mu epsilon minus delta by 2 to delta by 2 E A d z what is that

j omega mu epsilon into what is E dot d l this a line integral minus V i. Now, let us look

at LHS. So, LHS is I can say that if I integrate it, then del square a z del z square plus k

square a z sorry plus k a z d z minus delta by 2 to delta by 2. Now, this I should take that

this is happening at limit z tending to 0. So, this will be limit z tending to 0.

The first one will be that del a z del z one integration plus k square minus delta by 2 to

delta  by  2  A z  d  z  for  whole  limit.  Now, I  have  the  expression  for  a  z  this  is  the

expression. So, del a z is you can put and also this one you can integrate, so that will be

limit z to 0 j mu epsilon k A 1 sin k z minus B 1 cos k z of limited plus k square minus j

mu epsilon minus A1 by k sin k z plus B 1 by k cos k z is equal to j k epsilon these are

simple integration sign functions.
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So, you can do yourself, but still for helping you I am writing it. Now, you enforce the

limit. So, it will be minus j k mu epsilon 2 B 1. So, you can this is your R H, LHS, RHS

we have found equate these 2. So, we get minus j omega mu epsilon 2 B 1 minus j

omega mu epsilon vi that implies that B 1 value I got as V i by 2. So, B 1 I got, A 1.

Now, knowing this I know the second. So, this is the first boundary condition the second

boundary condition is that you put it there. BC2, so that will that I z z dashed is equal to

0 at z dashed is equal to plus minus l by 2. So, from this A you now find out I would that

so that will give you. This you can take as an exercise this gives you A 1 so that means,

now we know A 1, B 1 so that means I know the solution. So, from there we have so that

means A we know.
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And already previously this expression we have found that, if we have that in terms of

what is the relation between A and I z that is an integral relation in the previous we

founded it. If I have a one way linear current, then it is a contour integral I z x dashed y

dashed z dashed e to the power minus j k R by R d l dashed.

So, also I have the solution of A that A is in our case is minus j root over mu epsilon A 1

cos k z plus B 1 sin k z. So, this two are equated. So, this one I can put the thing minus l

by 2 to plus l by 2 I z dashed e to the power minus j k R by R 4 pi r d z dashed is equal to

minus j by eta A 1 cos k z plus B 1 sin k z ok. This mu and this gives this impedance.

Now, these equations now you see the right hand side is fully known A 1 B 1 I know. So,

I will have to find I z dashed, but unfortunately I z dashed is under or it is an integrand of

this  equation  that  is  why  these  equations  are  called  integral  equations.  So,  this

formulation is an integral equation formulation,  because this is unknown. And this is

under  an integration  or this  is  a integrand to an integration.  So, that is  why it  is  an

integral equation. So, this is the definition of any integral equation that if the unknown is

under in the integrand of an integration, then that is called an integral equation.

So, this needs to be solved actually this equation is called Hallen’s equation. This is the

famous  equation.  Now, this  equation  if  you  can  solve  that  means  integral  equation

solving, then we can find the current distribution. Actually we will see later that how to



solve this equation ok. So, this we will see that another formulation is also very much

used and that has certain advantages.

The advantages that actually the will finally, see if I want to solve it by moment method,

then I need to inverse actually this one to find this I need to inverse something. So, one

order less, because here this A 1 also is an unknown which needs to be solved. Because,

we are seeing the vector potentially actually this A 1 is a confusing thing, because this is

a vector potentially. And this is the unknown A 1.

Now, order  of  the  inversion  matrix  inversion  we will  see  in  class  one  that  we will

discuss. So that and also the generator that is a voltage generator, but other types of

various speeds that cannot be analyzed by this formulation, because it always assumed

that there is a voltage generator or spark gap generator there. But another general field

thing that is called Pocklington’s formulation that is also integral equation formulation.
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So, we will see now that that Pocklington’s integral equation formulation, again we have

that cylinders. Here the current density is on the surface. So, the first assumption of this

is the current density J j is on surface. So, it is called k z that, now the second thing is

this surface current density k z is circumferentially uniform.

So, we can write that I z at a point z dash that will be 2 pi a k z z dashed. So, here it says

that it is uniform circumferentially. And the third thing is important it is refinement from



Hallen said that the. There is a scattered field, so the thing is E z is a scattered field

created by the equivalent currents in the wire. Actually J z is on surface here, but Hallen

says that these circumferential current I can finally, take an axial current equivalent to

that.  And that  will  scatter  the  field  that  field  we will  call  E  z  thing  created  by  the

equivalence current in the wire assumed to be to be located at the axis of the cylinder.

So,  remember  we are  not  saying that  the  current  is  that  current  is  circumferentially

distributed,  but equivalent  thing that  we take.  We can easily take this  uniform thing.

What  is  the  equivalent  current  that  is  that  the  axis,  and because  it  is  a  symmetrical

structure and that the scattered thing is this.  Now, again we can say that M is 0 the

magnetic current and current density is given by this a z, J z, so same as Hallen’s thing.

So, we will have to solve this equation del square A z plus del z square plus k square A z

is equal to j omega mu epsilon E z.

So, you see Hallen’s equation we said this is 0 everywhere except the gap, but here we

are saying no there is also a scattered field,  because of these. Obviously, there is an

applied field at the gap. So, that is why a more than general. And so, we can now solve

this from the earlier thing. So, I can directly go to this Pocklington’s formulation that.
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So, we can ultimately write this l by 2 I z z dashed.
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Or, let me say that what will be the solution of this thing its solution will be obviously in

general, this we have already seen earlier. This differential equation its solution is this.

And, now specializing these for our all those assumptions, we can write that this is del

square del z square plus k square e to the power minus j k R by 4 pi R d z dashed is equal

to j omega epsilon E z s from Z directed Z by s.

Now, what is E z s, we know at the cylinder surface the total tangential electric field

should be 0. So, they are since both are same, I can write that E z s Z dash plus E what I

will write E z incident. Incident means what is applied they should go to 0; that means I

can always write E z s Z dashed is equal to minus E z i Z dashed.

So, this if I put here I get or I can write here, that this is minus j omega epsilon E z i Z

dashed Z ok. And also what is R, R is nothing but if we go to cylindrical coordinates rho

square plus j minus z dashed whole square. So, this formulation is called Pocklington’s

integral equation formulation. You see it is a similar structure integral equation, because

this is unknown. This part is known. Actually from the given excitation spark gap, if you

say I know what is E z i, I will calculate. If any other type of feed, I can find that. So, E z

is in my hand, but it is known.

So, this side is known, this side is some operations, this function is known. So, I need to

solve  it;  so  this  integral  equation  for  both  Hallen’s  and  Pocklington’s,  people  have

solved. And then will, with there are various techniques one of that I said most efficient



one most easy for computer implementation is moment method that we will discuss a bit

of moment method in the next class. And then we will see how to solve this equation in

the next class.

Thank you.


