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Welcome to the second lecture. We are still continuing the analysis method of aperture

antenna by using Fourier transform.

(Refer Slide Time: 00:26)

Now, we said in the last concluding part of the last lecture that, till we need to find this f

from the solution. So, generally how in a solution, if I get a solution from a differential

equation, how do we solve the constant? We put boundary condition. Here, what will be

the boundary condition? The boundary condition is, if this is really a solution, let us go

back to z is equal to 0 plane and then this solution should give me the aperture field that I

have assumed; so, that we will do now, to find the solution here.



(Refer Slide Time: 01:02)

(Refer Slide Time: 01:11)

So, what we can say that, we will go to z is equal to 0 and there we know that, we have

the tangential field on the aperture as this and this should be equal to; so,  I have this

solution, I have this solution. Let me put z is equal to 0 here. So, and what is its value?

So, I can say that 1 by 4 pi square minus infinity to infinity on, and that a on the aperture,

I am calling ft kx ky e to the power minus j kz into 0 e to the power minus j kx x minus j

ky y d kx d ky. You say, this was our solution, I have just put z is equal to 0 and only the

change is; so, what is ft? ft kx ky is the xy plane component of f kx ky or in, waveguide

we will call it transverse component.



Basically, this is nothing, but the transverse component of the f. Now, this relation you

see  is  clearly  a  2D  Fourier  transform  relation.  So,  from  our  knowledge  of  Fourier

transform, I can now find ft. What is ft kx ky? ft kx ky is equal to E a x y e to the power

plus j kx x plus j ky y dx dy and  I know that, this aperture field exist only over the

aperture, generally, you can say so, but this is the exact expression. From here, I can also

write it like this, that it is a say Ea x y e to the power plus j kx x plus j ky y dx dy. This is

known to me; so,  I can find ft. So, ft is known. Now, it says that f is not known, ft is

known ok, but I will say that I have already proved that, they had degree of in freedom is

2.

(Refer Slide Time: 04:51)

So, I will write f is what; ft ut plus fz z. Already, we have found that k dot f is equal to 0

means, that you can write it in terms of kx fx plus sorry, ky fy plus kz fz is equal to 0.

So, from here you can write what is fz; fz is nothing, but minus kx fx minus ky fy by kz

is equal to minus kx fx minus ky fy by we have already seen what is kz; k naught square

minus kx square minus ky square equal to answer is; so, you see that fz is also known,

because we know fx fy we know ft; that means, we know fx fy now, we can find fj. So,

we know f. So, we have formally. 
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So, now, we can say that what is the field? We will say the field is E x y z anywhere is

equal to 1 by 4 pi square ok. So, this is the solution. So, if I know aperture field, I can

find f and then I can find the radiated field everywhere. Now, the question is as in case of

wire antennas  also that  can  I evaluate  this  integral? This integral  is  very difficult  to

evaluate  in  general, because  this  k  dot  r  it  is  a  very  rapidly  varying  an  oscillating

function. So, generally the, it is not easy to evaluate it, but we are also not interested to

know what is the electric field everywhere. 

We want to know what is the electric field in the far zone and in the far zone; that means,

when r is much-much greater than lambda naught; that means, k naught r is large, there

actually, there is a method, which is called stationary phase method. Actually, in that

method what happens that if you have an oscillating integral, you can see that generally,

the  oscilla,  the  effect  of  this  oscillation,  cancels  out,  but  near  the  stationary  points.

Stationary points means where the, that function as a maxima or minima those stationary

points, there it is not an oscillating thing. So, what it says that you evaluate the integral

on those stationary points. Generally, that will be the, asymptotic value of the integral.

So, by applying that people have found that at very large or far fields, the field is given

by this  actually  classes. We derive this where stationary phase method that how this

comes, but here r naught if any of you are interested, you can contact me, I will tell,

share the notes that how can this be evaluated or these are available in books particularly



R. E. Collins book. It has been shown that how to do that. So, this is ultimately the useful

expression the far field of the antenna is given by this, you see in terms of this f, it can be

expanded. So, the far field is simply related to the Fourier transform of the aperture field.

Now, in the evaluation of this ft the integrals over x and y are taken over all portions of

the z is equal to 0 plane on which non-zero values of the tangential electric field exists, if

S a is an opening cut in a perfectly conducting spring then everywhere outside S a will be

0 tangential electric field. So, then, also it has been seen that for an aperture that is large

in terms of wave length, which is our case  I said that any practical antenna, aperture

antenna should be sizable dimension, electrical  dimension. So, there it has been seen

that, ft is highly peaked in the forward direction means along the z axis.

(Refer Slide Time: 11:01)

If you look at this diagram, so along this z axis, the ft is highly peaked and you know that

since the fx kx fx that formula, this kx fx is ft is highly peaked then fz, because of this is

very small. So, in this zones where we are interested, in the far zone and also in the both

side direction, we can say that generally, is also here in that zone. This cos theta that will

be, their cos theta becomes 1, because theta is 0.

So, here you see the expression, this is 1 and ft is, sizable, fz is that is why very small.

So, radiated field can be given nearly by ft in this region and this so; that means, in most

of our zone of interest if we are looking both side to the aperture, then this f, we can

replace by ft also if not then we will have to do.
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So,  I will write better that in general that f can be written as you see ax fx plus ay fy

minus az fx kx plus fy ky by kz. This I have already shown that how a fz comes. So, I am

putting  the value this.  So,  you see you have all  these values. Now, generally  in  the

observation zone, we want the whole thing in terms of spherical coordinates.

So, your job is to now, convert this ax ay and az vector to spherical coordinates; that

means,  I am giving you the clue that  ax  ay, this  you know spherical  to  rectangular

coordinate transformation just. 

(Refer Slide Time: 13:25)



So, with the help of this you can see that the far field can be written as j k o and then we

can write in our usual way, what is E theta far; obviously, these are all far field. So, what

is E theta for later reference, I am writing it, very-very important. Let us see that E theta

and E phi, we got in the far field I can easily get h theta h phi from this. So, here you see

that I have this components, another point, I want to emphasize that since, we have this k

dot f is equal to 0.

(Refer Slide Time: 16:38)

So, I can say that f does not have any component in the direction of propagation vector k.

So, and also we have seen that the electric field is directly related to f. So, can I say that

the electric field also does not have any component in the direction of the propagation

vector.

What is the meaning; that means, in the radiation zone the fields are tmof s. So, basically

we have superposition of tmof s in the um, far zone. So, from an aperture when the field

is radiated basically, we will get in the far field the superposition of various tmof s that

we can see in the spectrum, the special frequency spectrum shows that what tmof s are

there ok. So, this concludes the analysis part. So, by Fourier transform then if you can

guess the, a think where aperture field, then you can find the radiated field, we will see

one by one application of that. The first application will be open ended waveguide.
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You see this shows an open rectangular waveguide. It is the wave actually, this backside

it was a waveguide suddenly, after this at z is equal to 0 nothing is there. So, inside there

was E 1 0 mode, dominant mode was propagating and you see the dimensions etcetera

shown. So, electric field is y directed electric field does not have any variation in the y

direction; electric  field  has  variation  in  the  x  direction. Typically, the  variation  is

sinusoidal  variation  a  is  the  broader  dimension of  the  waveguide,  b  is  the  narrower

dimension of the waveguide etcetera, etcetera. The aperture is in the z is equal to 0 plane.
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So, I can write the transverse component of the fields as Ey, all of you know this from

your waveguide knowledge. I can write according to my uc coordinate, my coordinate is

a center of the guide. So, field will be cos pi x by a e to the power j beta naught z and Hx

is minus E naught Y w cos pi x by a e to the power minus j beta naught z not beta naught

sorry, sorry, sorry. I think it is actually beta TE 1 0.

It should be that I should not call it a actually, this is I will later and. So, what is beta the

propagation constant that is k naught square minus pi square by a square whole to the

power half ok. This is sometimes where i theta is T 1 0 also. So, you can write here as

TE 1 0, TE 1 0 ok. And what is this? This is the wave admittance and wave admittance

for this mode is beta TE 1 0 Y naught Y k naught ok.

(Refer Slide Time: 21:06)

So, at z is equal to 0 what are the fields; because those are my aperture fields. So, at z is

equal to 0 the fields are Ey is E naught cos pi x by a and Hx is minus. Now, at this

aperture suppose, wave was coming with dominant TE 1 0 mode; so, it was seeing an

wave impedance of 1 by y omega. So, y w 1 by that wave admittance suddenly, it sees

free space impedance that is 377 ohm.

So, what will happen? There will be immediately a reflection, there will be a reflected

TE 1 0 mode wave also, because of this discontinuity there will be some higher order

modes will get generated. So, a small amplitude of that are excited near the open end. So,

that can be taken into the analysis, but as a very, first cut analysis we can neglect both of



these, if we neglect them then we can say that the aperture field is also given by the

dominant TE 1 0 field.

I am again repeating that actually aperture field will be equal to the reflected, but the

actually the what has incident field plus the reflected field plus the higher order modes,

but I can neglect the reflected another part as a first analysis. So, it has been found that

this assumption if I made, that the aperture field is as if the same as the dominant mode

field, then in the main lobe of the radiation there is no discrepancy, but in the side lobes,

there are some discrepancy ok.

So, this is at z is equal to 0, this is the field. So, I say that this is my e a. So, you see that

that means my Ex is 0. So, can I say fx will be also 0, fx is the Fourier transform. So, I

will have only fy and what is fy? E naught minus b by 2 to plus b by 2 minus a by 2 to

plus a by 2 cos pi x by a e to the power j k x plus j ky y dx dy is equal to 2 pi a b E

naught sin ky b by 2 cos kx a by 2 by pi square minus kx a whole square, where kx is k

naught sin theta cos phi ky is k naught sin theta sin phi ok.

(Refer Slide Time: 25:13)

So, in the pi is equal to pi by 2 plane; that means, if you look at the diagram yz plane;

that means, in this plane that is and you show that this plane, can you show my hand

(Refer Time: 25:36) in the yz plane, the radiated field is given by E theta there will be

what will be kx kx is 0 in this for pi is equal to pi by 2 and ky is k naught sin theta and

sin phi is equal to 1. So, E theta is proportional to fy sin phi is equal to 2 pi ab E naught



sin k naught d by 2 sin theta 1 by pi square is equal to 2 by pi ab E naught sin v where v

is equal to k naught b by 2 sin theta.
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It has been shown here in the, this slept diagram you will see that this is the radiation

pattern e theta as a function of v. So, due to actually why it is like this seen you see an

interesting thing again you show that it is an interesting thing actually along y direction;

that means, yz plane they are the along y direction the aperture elimination is uniform. 

So, Fourier transform of that will be what; radiation pattern is sin function that is what it

came and in the pi is equal to 0 plane; that means, x z plane you can write kx is k naught

sin theta ky is 0 cos phi is 1. So, you can put in our all those solution actually, I am

putting all those here, you see these are my solutions here, I am putting and getting if you

(Refer Time: 27:59) with that.
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So, here I will get the e phi value to be 2 pi a b E naught cos u by pi square minus 2 u

whole square cos theta, where u is k naught a by 2 sin theta. So, that has been put plot

here, E phi by cos theta and it shows like this. Here, it was not uniform illumination and

so, it is not a pure sin function, but Fourier transforming.
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Now, if,  if  you have  at  x  band WR 90 wave guide  it  is  a  x  band waveguide,  it  is

dimensions, we know a is 0.09 inch that is 2.286 centimeter and it is b is 0.4 inch that is

1.016 centimeter. Let lambda naught is 3 centimeter;  that means, 10 gigahertz.  Now,



beam width you can find, what the beam width is in the E plane. E plane means phi is

equal to pi by 2 E plane, where the E vector lies with the propagation direction.

So, there the first low local set v is equal pi bs value you put k naught b by 2 sin theta is

equal to pi. So, sin theta value if you put you know all these values, it will come to the 3

what does that means, that theta is in the invisible zone. So, sin theta is greater than 1;

that means, in the theta plane we do not have a null.

You will have to go beyond that, but that is physically not possible. So, you will have to

say that null is not there. So, it is a very, when a v is too small for a null to occur in

visible space to beam width, it  is undefined here, similarly in the H plane means the

other plane phi is equal to 0 null occurs at k naught a by 2 sin theta is equal to 3 pi by 2

please note that at pi by 2. It does not occur, because that pi by 2 we get f y is equal to 0

by 0

So, here if you solve for sin theta, this sin theta also is greater than 1. This null here also

at invisible space. So, very flat beam to a directed nature so, for directive calculation, we

have to do actual integration that can be done, we know the fields now radiated zone.
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So, total power radiated we know. So, Pr we can calculate half minus a by 2 to a by 2

minus b by 2 to b by 2 and w E naught square cos square pi x by a dy dx, this will give



me ab by 4 and we know from the this, these two principle patterns from here, we know

where is the maximum radiation happening it is along z axis.

So, we can find the radiation intensity at z axis; that means, dP d omega at theta is equal

to 0 that will r square half y naught E theta square plus E phi square this, if you evaluate

will come to be. So, directivity d is 4 pi dP d omega f theta is equal to 0 by Pr. So, you do

this you will get finally, you will have to put those things values of this y w, this wave

impedance that I have already told. So, if you do that you will get 64 ab by beta TE 1 0

lambda naught cube and beta TE 1 0 is pi by 4 by lambda naught square minus 1 by a

square whole to the power half.

(Refer Slide Time: 33:27)

Again, if we do that thing that lambda naught 3 centimeter WR 90 waveguide then you

can find this D becomes if you put these values 3.5. So, directivity of a open ended the

waveguide in x band that WR 90 the directivity is 3.5. So, it is definitely better than a

dipole, you say it is definitely better than a dipole, but in aperture thing, it is a such large

thing 3.5 is not good, but open ended waveguide is a very popular antenna, because in

arrays it can be used in array, it is a very good element. It can, sustain very very high

power, compared to all those wire antennas.

So, in various radar applications you have open ended waveguide then it is a very good

structure, if the you see feed is coming suddenly that is becoming an antenna. So, there is

no need to have a separate antenna and all those things and on a ground plane everyone



is put;  so, the front part is very planar. So, that is why in missiles etcetera guidance

systems,  they  are,  when  there  are  guidance  systems,  missile  guidance  system.  It  is

heavily  used  this  open  ended  waveguide  and  it  is  antenna  properties  are  very  well

known. 

So, now we will see, to today we are concluding this, but we will do the same thing in

case of  other  things,  the horn antennas.  Because  now, the question is  if  I  flared the

aperture that becomes a horn and the moment I flare my motivation is, I should get better

directivity,  which  actually  we  will  get,  by  flaring;  So,  that  we  will  see  in  the  next

lectures.

Thank you.


