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Analysis Procedures of Aperture Antennas

Welcome  to  this  (Refer  Time:  00:16)  lecture.  Now  we  have  seen  up  till  now wire

antennas, here types of wire antennas and how to analyze them. And we have seen while

seeing the antenna parameters that basically antennas radiation efficiency depends on the

effective area of an aperture, effective area of an antenna. Now wire antenna, since they

are by definition wire, so they do not have much width, though they have some electrical

width  that  we  have  shown,  but  that  is  not  sufficient  if  we  want  high  gains,  high

directivity.

So, for that the idea came that instead of wires if we use a two dimensional structure for

antenna; that means, aperture to radiate, then it will be better and it turned out. Actually

the one of the first wire antenna a aperture antennas were also invented in Calcutta in

India by sir J C Bose, because he was the first to use for communication purposes or to

prove his experiment, actually he was trying to prove that the laws of electromagnetics

also apply (Refer Time: 01:43) optics and for that he first  used as a receiver  a horn

antenna, which is nothing, but an aperture.

He called it collecting funnel, but actually it was an aperture antenna, so horn antenna

which is very popular till today and we will see it. So, this aperture antennas are a class

of antennas, the examples are, if I have an rectangular or any wave guide rectangular or

circular or any cross section wave guide as a transmission line and suddenly I open it;

that means, there are no more metals, so it then from the mount of the web guide, it will

start radiating, so that is called open ended wave guide antenna.

Then and modification of that  to  increase the directivity;  that  means,  to increase the

effective aperture his horn antenna, then people also cut slots on the conducting walls of

web guides, those are slot antennas. Then there are another use that you use a this type of

aperture antenna and use reflecting surface which is called dish antenna, so as a reflector

that dish antenna that also behaves as an aperture, but actually there should be an antenna



some aperture antenna or some wire antenna at its nearby, so that that comes to that

length surface and from there it again starts takes this radiation properties.

So, those dish antennas then you can have. Now a days the planar antennas one of that is

called patch antenna, microstrip antenna, so you have a aperture, conducting aperture

from their put on dielectrics and from there it is radiating. So, all these are examples of

aperture antenna

Now, the class the analysis technique for this aperture antennas is a bit different from

wire  antennas,  why  because  wire  antennas  we  have  proved  that  if  we  can  find  the

conduction  current  distribution  on  the  antenna,  then  we  can  find  the  radiated

electromagnetic field everywhere in the planet, in the whole universe you can find that

(Refer Time: 04:18).  Now here in aperture antenna case, it  is not always conducting

current, because you think of a horn antenna.

(Refer Slide Time: 04:30).

Suppose I have a horn antenna, so this is its radiating mouth or if I see the front view it is

something like this, so actually there are. So, these are all metals and suddenly there is

nothing there, so there is no conduction current,  so we cannot find out the what is a

conduction current on an aperture that is why is, but there is an electric field created

here, because of whatever source excised that is.



So, aperture antennas are analyzed by the field distribution on the aperture. So, we will

see that, so all these planar antennas or aperture antennas, they are analyzed in terms of

field with, that is there on the aperture. So, if I know somehow this field, how to know

that that we will see there are various ways, but we can, if we can guess what is the field

on the aperture, then we can find the field everywhere

So,  it  is  a  field,  aperture  field  based  analysis  technique  now. Another  thing  is  this

aperture to have meaningful directivity. This we have said earlier also that the both the

aperture dimensions. Since it is a two dimension also the it has two dimensions, so its

length and width both should be a at least several wavelengths the, so that you can have a

meaningful gain; that means, it should have a sizable electrical area the, then only you

can  have  a  meaningful  thing.  Now  you  think  that  at  low  frequency  these  aperture

antennas  are  not  popular, because if  you want  to  have the aperture  to  be of  sizable

electrical length.

And  since  the  wavelengths  are  very  large  at  low  frequencies,  so  you  require  huge

apertures, which is not possible; that is why at high frequencies. Particularly microwave

frequencies where typically the wavelength has come down to some centimeters there

you can have this type of aperture structures that is why aperture antennas are mostly use

at microwave frequencies. So with this background, now, let us see the how to find the

radiated field from an aperture whose field distribution is known.

So, there are actually two techniques out of that today we will see the first technique; that

is called the radiation from a planar aperture by Fourier transform method. Well I think

all of you know Fourier transform and we will use that Fourier transform knowledge the,

but there will be a difference here that this Fourier transform is not the time frequency

Fourier transform, it is a special Fourier transform. So, to understand this let us look at

the this diagram.



(Refer Slide Time: 07:59).

I have an aperture this, this circular thing what is shown in general, it  can have any

shape, so this is an aperture, so that is called as S a the, this whole aperture is denoted by

Sa and we say that we know the tangential field; that means, field on this aperture is

known and that field we are calling E a. So this whole thing is a plane, there is a cut and

that cut is the aperture, so you can say that this is metal or dielectric or something and

there is an aperture there so, this for our coordinate reference we are calling that this

whole ah screen that is z is equal to 0 plane.

So, the aperture is radiating in the z is z greater than 0 size, and actually there are some

sources definitely at z less than 0, somehow they are there are various ways by which

this aperture is excited, we need not go into those details, because all those source gets

characterized by this electric field on this, each tangential field. Actually this comes from

an theorem called equivalence principle, so if I know the field on this aperture, actually

that is sufficient to characterize the excitation ok

So, now our job is to determine the radiated field in z greater than 0. Now let us look at

some Fourier transform basic, I think all of you know Fourier transform, but in this case

it is a special function So, I do not have a function of time I do not have a function of

space. Let us say that I have a function w, it is a function of x, and its Fourier transform I

can define by W and the special frequency I will write as kx.



(Refer Slide Time: 09:56).

So, W kx I can define as minus infinity to infinity wx, this is small wx e to the power

plus j kx x dx, this is my definition of spatial Fourier transform. Please note this plus,

generally in time frequency Fourier transform generally, though this is also valid that we

generally take this as the Fourier transform we take as minus, but here we are taking

plus. Actually it is a general thing, we can take anything in this case specifically for some

reason the, that will give us advantage later, this is plus jk. So, we can write that what

will be the inverse Fourier transform; in a inverse Fourier transform will be wx is 1 by 2

pi. So, I can say that the variable kx and x in the special transform they follow the same

role as t and omega in time signals Fourier analysis.

Please remember that t is not equivalent to x, because of this choice, t is corresponding to

kx and omega is corresponding to x, this will have profound implication, but because of

our this choice, generally this is the equivalence (Refer Time: 12:25) ok, so this is a one

dimensional Fourier transform. Now since I have aperture I need two dimension, so what

is a two dimensional Fourier transform? Suppose I have a function of both x and y, u x

and y. So, its Fourier transform I will write as and its inverse transform ok.



(Refer Slide Time: 12:44)

So, with this background let us start. Now we have seen that any antenna, the radiated

field satisfies the wave equation.

(Refer Slide Time: 14:22).

So, what was the wave equation del cross del cross e minus k 0 square e is equal to

minus j omega naught j, this was the standard wave equation and we know that this del

cross del cross e; that is by vector identity del dot e minus Laplace nop vector Laplace

nop ok, and in the region, I am interested in the region z is equal z greater than 0, so it is

a radiated zone. So, there j is 0, there is no conduction current and also the there is no



charge density, so I can write del dot e is equal to 0 and from these equation del square e

plus k naught square e is equal to 0 ok.

Now, these  are  the  two main  equations  that  we will  solve  to  find  out  e.  So  I  now

numbered them, actually here I have written it in the reverse order. Reverse means; that

is for my thing, because this is a vector equation.

 (Refer Slide Time: 16:04).

So, let me call this my equation 1 and the divergence equation that is E or it is called 2

later say. So, these are the two main equations that we need to solve. Now, again I recall

another thing of Fourier transform.



(Refer Slide Time: 16:53)

Suppose Fourier transform F t, I am writing is an operator, it is a time Fourier transform

operator. So, time, suppose I have a time function s t, what is the Fourier transform of the

derivative of s t that we know is j omega this F t s t; that means, it is j omega Fourier

transform of the signal s t; obviously, this s t only the to this hold, only restriction is s t

should be time limited; that means, s of infinity is 0, so for a time limited signal this is

valid. Now let me say that what will be the special part of this.

So, can I say that Fourier transform of x del u x y del x will be; obviously, this is a partial

variable because this is two dimensional, so this can I write as minus j k x F x u x y. Why

minus? Because of that definition problem in special  case the;  similarly this  F is  an

operator  that  is  why  it  is  something  curly  it,  I  am  trying  to  write.  So,  for  a  two

dimensional function what will happen to this, del x. So, this will be minus j k x whole

square F x u x y etcetera etcetera you can do. Why I am doing this? because I have this

persons and this persons, so I have del square here del del x square del del y square del

del  y  square that  is  why I  am doing this.  So,  let  us  take  Fourier  transform of  both

equation 1 and equation 2.



(Refer Slide Time: 19:56).

So, I get del square del x square plus del del. This is from the first equation, just I am

writing it in Cartesian coordinate. Similarly here the second equation you will give me

del E x x y z del x plus del E y x y z del y plus del E e z x y z del z is equal to 0.

Now, let us take Fourier transform of 1 and 2. So, this one if I take Fourier transform,

special Fourier transform I get del square. What is this E x, E x k x k y z is Fourier

transform of E x y z with respect to x and y.

Here you see I am deliberately making a symbol symbolical mistake. Actually, you see

that I have written there, when we take Fourier transform of w x, the Fourier transform is

an entirely different function from this original function; that is why we use lower case

and upper case, for some other notation we do, because Fourier transform is a completely

different function, it is not same as w x, but here I am doing that.

Ah where you will see same notation E x y z and this thing only I am giving a sorry k x

(Refer Time: 24; 14) really, so E x yes, no this will be removed. Actually this notation

itself I am remaining same only by argument I am changing, you will have to remember

this, because it is not simply that E x y z and E they are not same functions, only I am

changing argument not that.



But if we use other notations that will get complicated that is why we are keeping the

same, but remembering for remember, for understanding or you will have to understand

that k x k y by their presence it is the Fourier transform.

So, it is not the same function as E, this is for notational simplicity ok. So, we have got

these two things, now I am removing these. So, these are my two things, here you see I

have got this variables there is something so I need to simplify, so that I am doing by

letting kz square is equal to this constant k naught square minus k x square minus k y

square.

(Refer Slide Time: 25:26)

So, then this, this equation if I put that k z square thing it becomes del square E. Now,

this I have put in this equation just k z square, the moment I do that you see this looks

familiar, this is an wave equation so what is the solution of this? The solution of this is E

to the power plus minus j k z z, you can put also and see that this is a solution. So, this

wave equation is solved, but remember actually this is the Fourier transforms solution,

because this is a Fourier transform expression. 

Now for them also, since we are considering on the outwardly propagating wave, so the

Fourier transform of an outward wave that cannot have this plus solution, so we will not

take the plus solution, this solution we will throw away and we will take only the E to the

power minus solution.



So, the what will be the general solution of E. So, solution of E is E k x k y z is f k x k y

E to the power minus j. I can write that this is a constant as far as z variable is constant.

Now this is to be determined, so the moment this gets determined we will be finding the

solution. So, now, this solution is, I have obtained it from this equation, so let it put me in

the other equation. 

So, if I put it in the other equation this solution you will see that we get k x f x plus k y f

y plus k z f z is equal to 0, where what is k, that sorry what is f x? F x f y f z are

components of f k x k y x y z components of f x square, or this sometimes this is also

written to understand it as k dot f is equal to 0 something. So, what is this equation tells

us? This is a very important equation and this tells us that, I am trying to find f x f y f z,

it says that they are not independent, 2 are independent, because they are related by this.

So, if I find 2 the other already gets determined ok, so, this is the outcome of these. Now

why this is so? Actually if you look back this equation came from where? This equation

came from that the restriction on the radiated field; that is divergence should be 0, so that

vanishing divergence put this  condition that x, three components are not independent

actually there is only 2 degrees of freedom there ok.

So, this solution now let me write the inverse from this solution. Now this is the solution,

so what is the, this is a Fourier transform what is the inverse transform of this? Inverse

transform of this is E x y z is 1 by 4 pi square minus infinity to plus infinity f k x k y E to

the power minus j k z z then E to the power minus j k x x minus j k y y d k x d k y ok.

This is the solution, this part I have written and then E to the power, this is the inverse k

E to the power j k x minus j k minus d to x ok.



(Refer Slide Time: 30:32).

 

So, this in simplified way I can write as, where what is k dot r k x x plus k y y plus k z z.

So, that is all almost that it tells us that what will be the (Refer Time: 32:22) at any point.

It is simply the, it can be represented, can I say that this is E to the power j k dot r; that

means, various values or x y, so this is a plane wave can I say. This is, these three, this is

a plane wave and it is basically superposition of plane waves, they are taking the value k

x k y different k x k y. So, this is a spectrum because this k x k y is nothing, but our

spatial frequencies.

So, I can say that what is the radiated field that in the z greater than 0 zone, the field can

be represented as a spectrum of plane waves, because this  one is a plane wave with

vector amplitude f propagating in the direction of the propagation vector k ok.

From here we will have to take that what are the different values k z k x and k y can take.

Now from the definition of k z, if you see the definition of k z, this was the definition of

k z k z square is equal to k 0 square a. So, here you can see that magnitude of the

propagation vector that is same as k naught.



(Refer Slide Time: 33:59).

Now, there are two possibilities k x square plus k y square may be greater than k naught

or may be less than k naught. If k x square plus k y greater than k naught, then k z, you

see k z it becomes imaginary. What is the meaning of a imaginary k z? So these are plane

waves  which  will  die  down,  actually  they  are  attenuating  wave,  they  are  called

evanescent waves and basically they contribute to the near zone of the radiations. So,

near zone radiation is contributed by these evanescent modes.

And for this thing, this k z is real for the other condition. So, they are the contribute to

the radiated field, since these are the only plane waves propagating outwards as their k z

is real ok. I think the in the next one we will see that the. Till now we have not got the f

value, because we have said the solution is this, but this f we have not determined how to

find f, so that we will see in the next class.

Thank you.


