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So, in the floating point representation there is one more point regarding these numbers

that we are going to store.
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Like  in  IEEE  754  single  precision  floating  point  standard.  So,  an  exponent  255  it

indicates a special value. So, if the significand part is 0. So, this represent a plus infinity

or minus infinity depending upon the sign b ok. So, this has got a special representation

of infinity.

On the other hand if the significand part is nonzero, then it means it is a not a number.

So,  many  a  time  you  might  have  seen  while  writing  programs  using  floating  point

numbers. So, it prints the message that not a number in a in like that. So, that actually

comes from here. So, if the number that you are getting is of this format that this the

exponent part is 255, and the significand part is nonzero then it will be telling that it is a

it is not a number. And if it is zero, if the significand part is zero then it is plus infinity or

minus infinity depending upon the sign.



In  the  double  precision  format  also  the  special  exponent  value  for  double  precision

number is 2047. So, instead of 255, it is 2047 otherwise it is same. So, if you are getting

exponent 2047 then this has got a special meaning. So, this maybe if the significand is 0

then it is plus it is plus minus infinity depending upon the sign bit and if it is if the

significand is nonzero, then it is not a number. So, this way this IEEE the standard so, it

has kept special provision for representing infinity and this not a number type of flags.
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So, another caution that we have discussed in the last class that, both in our model as

well as IEEE. So, there is plus 0 and minus 0 that representation is possible. So, we

should be careful while writing programs and trying to check between whether a variable

b has become 0 or not because this plus 0 and minus 0 they are not same.

So,  you  can  get  some  surprising  results  because  of  that  either  the  check  may  be

successful or the check may be fail, maybe a failure though in both the cases the value is

0 only ok. But the x equal to 0 in some cases that check may be very check may come

out as pass some cases, it may come out as a fail. So, we have to be careful.

So, maybe we will do some other check ok. So, it will normally what we do is it is less

than some very very small quantity. So, maybe I can I will write like x less than point 10

zeros and then 1. So, that way it is a very small number. So, it is it may be considered to

be equal to 0; the absolute value of x of course.
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Next  we look into how do we do this  addition  and subtraction  in  the floating  point

format. So, floating point addition and subtraction

(Refer Slide Time: 03:19)

So, we use methods which are analogous to our paper pencil method. So, first of all the

operands must have same exponent otherwise you cannot do the addition subtraction. So,

the exponent has to be preserved and the after doing the addition and subtraction. So, we

may we may need to normalize and that way the exponent may be changing after the



addition or subtraction. So, if the exponent requires adjustment so, we do so, at the end

of the calculation. So, this is the process.

Suppose I am do trying to do an addition of X plus Y. So, if X equal to 0 then the answer

is Y directly so, we go back. If the X is not equal to 0 then we check whether Y equal to

0 or not. If Y is also not equal to 0 then we, if Y is equal to 0 in that case the answer is Z.

So, it simply goes out otherwise X and Y both are nonzero. So, it comes to this point and

it checks whether the exponents are equal or not.

So, if the exponents are equal, I will do not need to do any exponent adjustments. So, I

just  simply add the add sign significands and if  the significand becomes 0,  then the

answer is 0.  If the significand is not is  nonzero then there may be a possibility  that

significand there is an overflow or there is no over flow in the significand with contain

containing the number of bits.

If there is no overflow then we have to check whether the result has been normalized or

not that is after decimal point, the first digit should be 1 and all before decimal point

there  should  not  be  any digit.  So,  all  those  rules  so,  it  is  checking  those  rules  and

accordingly  if  the  results  are  not  normalized,  then  we  have  to  shift  the  significand

towards  left,  decrement  the  exponent  part  and  that  way  this  if  there  is  it  resulting

exponent underflow. So, if it is not so, we and it is result is not yet normalized. So, we

may  just  shift  by  a  number  of  bits  the  significant  part  till  the  exponent  and  go  on

decrementing the exponent.

So, till the exponent becomes this significand is correct as per our rule. So, ultimately

when this everything is correct, then there we have far we have got the result then we go

then we round up round our do a rounding operation of the result and then it returns. And

otherwise if there is an if there is an overflow in the significant part. So, you have to shift

the significant right increment the exponent part and if there is no exponent overflow,

then we will go for result normalization and go back.

And if  this  exponent  part  also overflows;  that  means,  after  doing this  addition  both

significant and exponent they have over-flown. So, we cannot represent this addition the

added addition result into the given format. So, it will report overflow and it will return.

So, there is an overflow in the addition process.



Similarly, for the subtraction part so, we just change the sign of Y, and then rest of the

thing is same as we are doing for the addition part. So, this is simply pen and paper type

of addition subtraction. So, that is followed here also.
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So, suppose we are trying to do this so, 12 to the base 10 and 1.25 to the base 10. So, this

we  are  adding  using  14  bit  simple  floating  point  model  that  we  have.  So,  12  is

represented as in our normalized model say it is 0.1100 into 2 power 4 and 1.25 is 2.1

there is 0.101 into 2 power 1.

So, I have to make both of their exponents same so, we take both of them 2 exponent 4

larger one definitely. So, after that so, when this is converted into 2 power 4. So, this

becomes the representation knows now we add this significant with this significant. So,

getting the significant part as this so, our overall sum becomes 0.110101 into 2 power 4.

So, here no adjustment is necessary because before decimal we have 0 and after decimal

we have one. So, no adjustment is necessary.
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So, in case of multiplication so, we do similar thing so, by this is also like say paper and

pen a paper and pencil type of multiplication that we do. So, we multiply the operands

and add the exponents. So, significant parts are multiplied and the exponent parts are

added. So, if after that we you or you need to do some adjustment with the exponent. So,

we do that adjustment after the calculation.

(Refer Slide Time: 08:00)

So, this is the multiplication routine. So, we multiply so, first check whether X is equal

to 0 or not, if X equal to 0 then we say that we check whether we say that the result Z is



also equal to 0 or if Y equal to 0 then also we say that the result Z is equal to 0 and it

returns from there.

And  if  both  are  nonzero  then  we  add  the  exponents  because  while  doing  the

multiplication the exponents will get added. So, we add the exponent and we subtract the

bias and if there is an exponent overflow so, we report overflow. If there is no exponent

overflow then we check whether exponent under flows or not, in that case we will report

an underflow. And that is not the case then we multiply the significance, they do some

normalization and then do rounding and ultimately it return. So, that way this floating

point multiplication can take place.
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So, you can take a paper pencil type of example and see how to do this thing, and I hope

you are already familiar with these multiplications from the school days; So, instead of

taking the base 10 so, it is checking base 2, that is the only difference otherwise the rules

are same.

So, another very important issue with this floating point representation is the rounding

and errors. So, no matter how many bits we use in a floating point representation. So, our

model is finite. So, as I was telling that there is this floating point numbers they can go

up to infinity. So, this after the decimal point how many digits you are keeping. So, that

way it can go up to infinity. So, that way there will be restriction. So, we will have to be



careful and then when there is a restriction. So, we will it will introduce some amount of

error.

So, real  number system is  infinite.  So,  our models  can give a nothing more than an

approximation  of  the  real  value.  So,  at  some  point  every  model  breaks  down.  So,

whatever be the precise the that we allocate for the exponent part and the significant part.

So, there is there will be a limit. So, it will introduce some error in the calculation. So, if

you use more number of bits, then we will can reduce error, but we can never eliminate it

totally. So, these errors will remain it will may not go.
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So, how to reduce the error? So, we will try to reduce the error or we should be while do

while  doing arithmetic  with this  floating  point.  So,  we should be and we should be

having an idea like how much error may get introduced into my calculation and another

thing is that, as we are doing some operation repetitively.

So, this may add this may go increase the error part ok. For example, if we are adding all

numbers all floating point numbers in an array then as we are adding successive numbers

or successive entries of the array. So, this the error also grows.

So, in our 14 bit model we cannot exactly represent the value 128.5. So, in binary it is 9

bit wide so, it is like this. So, in case of floating point representation what will happen is,



I have to represent it as though this 0.1 something and then 2 to the power some value,

but that it will not be possible to represent in 14 bits.
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So, what is what will happen is that so, if you represent we try to represent 128.5 in our

14 bit model we will lose the lower order bit. So, it will become 128 only. So, this 0.5

will not be coming, because the last bit will be ignored it will not have so much of space.

So, the error that is introduced is about 0.39 percent. So, if we if we. So, so just for

representing the number, we are losing 0.39 percent.

So, if we if the go on repeating the process by adding 0.5 to 128.5. So, just we go on

adding 0.5 to this again and again, then within 4 iterations. So, it will introduce about 2

percent error in the result. So, that will come because of every time we are doing it so, it

is not representable in this system. So, as a result it will introduce some error into the

system. So, that is that is how so, these errors can creep in floating point computations.
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So, floating point errors can be reduced when we use the operands that are similar in

magnitude; so, that is one possibility and if we are for example, if we are repeatedly

adding 0.5 to 128.5. So, it would be better to iteratively add 0.5 to itself and then add

128.5 to the sum. So, what it says is that since every time we were adding 0.5.

So, you add this 0.5 separately how many whatever be the number of 0.5 is you need to

add with 128.5. So, many 0.5’s are added together and then the resulting sum is added to

128.5.  So,  in  this  way while  you  are  doing  this  0.5  additions  so,  error  will  not  be

introduced. So, it is possible that while adding with 128.5 the resulting number. So, the

some error will be introduced, but that will be introduced only once. So, that way the so,

if the error caused so, the error possibility will reduce.

So, in this particular example so, this error when we are adding 1.5 to 128.5 we lost the

lower order bit, but if the values are higher, then we may start losing the higher order bits

as well and as a result we can a the situation may become more problematic. So, it may

become the number that we are representing maybe far away from the actual number.
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So, floating point overflow and underflow can cause programs to crash ok so, this is

there. So, though it is a bit of programming side, but it is important because if the if there

is an underflow the number becomes 0 and then when you are doing some division for

example, by that number. So, it is a divided by 0 error. So, as a result the program may

crash. 

Similarly over flow also it may go out of range as a result it may generate some wrong

values and then the program may crash. So, this overflow and underflow so, these are the

two cases and if we are whenever we are using this floating point representation so, we

should be careful. Like if you are writing a program, then it should be careful that this

type of cases are caught, and then we avoid the operations using those values, and come

up with say some sort of error message ok. So, that may the program does not crash or

the system does not crash.
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So, these floating point numbers. So, we have to there are three important terms with

respect to floating point numbers the range, that is the range of values it can represent the

precision, with what precision it can do it and the accuracy level. So, range is simple.

So, range of any integer format is the difference between the largest and smallest values

that can be expressed. In case of accuracy it refers how closely a numeric representation

approximates a true value and this precision means, how many the number how much of

information we have about a value. So, apparently it seems that if the precision is higher

than the accuracy will also be high, but that is not always the case.
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For example suppose we are representing the number pi and we have stored the number

as 3.1333. Now, you see that value of pi that we have here is accurate only up to two

places after decimal ok, but while storing it I am storing value which has got 5 digits of

precision. So, 3 and this 1333 so, total 5 digits are stored. So, that way the amount of

accuracy and the amount of precision, they are not necessarily same ok. So, they may be

different.

So, there are other problems in floating point numbers also because when your truncate

the  bits,  you  cannot  always  assume  that  a  particular  floating  point  operation  is

commutative or distributive; like what do you mean by if I have an operation say x plus y

ok.

So, this  addition operation so,  in general x plus y is equal to y plus x.  So, this  is  a

commutative  operation  or  x  into  y  plus  z  is  xy  plus  xz.  So,  the  first  one  is  the

commutativity  property, second one is  the  distributive  property. So,  these  operations

addition and multiplication say they follow this type of properties.

So, for integers it is true, but for floating point numbers. So, it may or may not be true.

So, in reality it may not happen because of this accuracy and all ok. So, there is some of

the bits we truncated. So, you so, we cannot always assume that x plus y you will always

be equal to x plus y plus x or in particular x into y plus z will be xy plus xz. So, that is



another very problematic situation. So, while handling this floating point number. So,

you have to be careful with them.
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So, for example, so, this a plus b plus c is a plus b plus c. So, if you are doing this

addition first and then adding c with it, in another case you are doing b plus c first and

then adding a with that then or. So, this is the distributivity property or say a into b plus c

is a b plus as I was telling so, here this for floating point number. So, we cannot assume

this type of equality is to hold always; like if you are do a plus b first. 

So, the result may have may have some got some truncations with that c is added. So, on

the other hand when I am being b plus c first so, this gives another this may result in

some other type of truncation, with that when a is added the final results may not match

of that may be between the two cases ok.

So, this another important thing is that when you are checking the value of a floating

point number. So, we have to say like say we want to check say x whether x is equal to 2

or not where x is a floating point number. So, this check may not be correct because this

the 2 the number 2 may not be represented with same level of accuracy as x ok.

So, as a result what will happen is that, even if the mathematically this x and 2 should be

same, but in the represent from the representation point of view the x and 2 their values

may be different.



So, while if you put it in a program. So, you may find that it is creating some problem.

So, it is better that you write it like this the absolute value of x minus 2 is less than sum

epsilon so, where epsilon is  a very very small  positive quantity. So,  we find out the

difference between x and 2 take the absolute of that. So, it becomes positive and then we

check, whether it is a less than epsilon or not.

So, this way so, normally in floating point problems instead of writing it like this. So, we

have to write it in this format to avoid this type of problems ok.
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So, next that finishes our discussion on this floating point this number system. So, next

we will be doing a few exercises which are very interesting. So, the first one is says that I

have got 2 numbers 75 and 45. Out of this 75 is a base x number and 45 is a base y

number. So, what are the possible values of x and y. So, if we want to do this.
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So, let us take this one so, 75 to the base x equal to 45 to the base y where this 7 5 so,

they are the digits of that number system and they are take they are numeric values are

taken to be equal to decimal 7 and decimal 5 ok. So, if I just convert it so, it becomes 7 x

plus 5 equal to 4 y plus 5. So, that gives me the condition that 7 x equal to 4 y fine.

So, how can I satisfy? So, any value of x and y that satisfies this equality so, that is good

enough for the mathematical point of view. So, we can say that I will choose x equal to 4

and y equal to 7 x equal to 4 and y equal to 7 that satisfies this condition. But this is not a

correct result because if you look into the number here 75 x so; that means, this x must

be more than 7, otherwise the digit 7 is not defined for x. Because if I have got a base a d

number system, then the digits are 0, 1, 2 up to d minus 1. So, if 7 is the base then I will

have the digits 0, 1, up to 6.

Similarly, for this if so, this x equal to 4, I cannot get the digit 7 there; similarly if y equal

to 7 y equal to 7 is of course, all right from the point of view. So, this is fine. So, this

does not satisfy the relation. So, what else can be satisfied? So, we can have this the next

one so, I can take x equal to 8 and y equal to 14. So, if I take x equal to 8 and y equal to

14, then it is fine ok. So, then this relation is correct. So, we have to so, this is the correct

value for this particular problem.
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So, we will take another example say this one so, 2 x to the base 5 equal to 3y to the base

6. So, by a similar logic so, it is 2 into the number is 2 into 5 10 plus x equal to 3 into 6

that is 18 plus y. So, you get a condition that x minus y should be equal to 8. So, if I put

any value of x and y such that x minus y equal to 8 then we are done. So, can I take say x

equal to 9 and y equal to 1.

So, that satisfies this relationship, but the problem is this one. So, this y should be at least

y, y should be less than 6 and this x, x cannot be 9. So, x cannot be 9 so, x has to be less

than 5. So, x has to be less than 5.

So, naturally I cannot have any relation that satisfies this particular property. So, I cannot

choose any value of so, if I choose y equal to 1 then I will require x equal to 9. So, which

is not set possible so, I can choose x at most equal to 4 fine. So, x at most since, this is 5

so, I can have x to be at most equal to 4.

So, if I put x equal to 4 ok so, 4 minus y equal to 8 or y also equal to 4. So, that is a

possibility. So, I take x equal to 4 and y equal to 4. So, 24 to the base 5 equal to 34 to the

base 6 is it correct. So, 5 into 2 10 plus 4 sorry then of course, so, this x minus y no sorry

this is not correct because this is this 4 minus y. So, y is becoming minus 4. 

So, the so, I cannot choose any value of x and y which satisfies this relationship. So, this

I cannot get any satisfying value for this problem.



Then this one the third problem is simple. So, here we have got 32 to the base 9 and 24

to the base 5. So, you multiply them and then so, for multiplication purpose. So, we have

to we can first convert both of them to their decimal values do the multiplication, and

then convert it into a base 6 number system. So, you have to you have to go on dividing

the  number  by  6  and  see  what  are  the  reminders  and  then  the  reminders  you  can

represent it like the.
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Then the fourth one this 267 to the base 8 in the base 11 number system so, here first of

all these 267 to the base 8. So, this has to be converted into decimal number system. So,

this is 2 into 64 plus 6 into 8 plus 7. So, that is 128 plus 48 plus 7. So, that is this is 55

so, 55 plus 128 so, 128 plus 55. So, this is 3 183 so, we get 183.

Now, this 183 if you divide by 11 so, it is 1 then 7 so, 6 so, 66 then this is 73. So, this is

your 7 then again by 11. So, you get 1 and 5 and then 11 0 and 1. So, 157 in the base 11

number  system.  So,  this  way you can  convert  numbers  from one number  system to

another using this division. 


