
Digital Circuits
Prof. Santanu Chattopadhyay

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture - 60
8085 Microprocessor (Contd.)

(Refer Slide Time: 00:19)

This for the RIM instruction; so, other bits like bits 4 to 6 show whether or not there are

pending interrupts on RST 7.5, 6.5 and 5.5 line. So, bits 4 and 5, they return the current

value of RST 5.5 and 6.5 pins bit, 6 returns the current value of RST 7.5 memory flip

flop. So, you note here that for bits RST 7.5, we do not read the pin value because RST

7.5 is an S triggered flip flop. So, if it may be that that edge is already done; so, if you

read the pin so it does not have any meaning and the pin that the edge is already

registered in the R 7.5 memory bit RST 7.5 memory bit. So, that is already there. So, it is

better to copy it from there.

So, this bits 4 to 6. So, they are holding the pending interrupt status and bit seven is for

the serial data input. So, the RIM instruction it reads the value of the SID pin on the

microprocessor and returns it in this particular bit. So, after executing the RIM

instruction the SID pin whatever be the value. So, that will come to the most significant

bit of the accumulator and then accumulator. So, based on that; so, we can we can read,

we can read the value through the SI of the SID pin into the accumulator bit 7.

(Refer Slide Time: 01:40)

Now the pending interrupts that we are talking about say 8085 has got 5 interrupt lines

and interrupts may occur during an ISR and remain pending. So, this can happen. So,

using the RIM instruction the programmer can read the status of the interrupt lines and

find if there are any pending interrupts. So, this is the utility of this of this RIM

instruction the advantage is being able to find about interrupts on RST 7.5, 6.5 and 5.5

without having to enable low level interrupt like INTR.

So, many a time, what happens is that maybe in my system RST 7.5 and 6.5, they are

very important devices and 5.5 INTR, the devices connected to those lines are not that

much interrupt not that much important. So, maybe I was servicing RST 7.5 and in

between some 6.5 had occurred, but 6.5 having lower priority than 7.5. So, it was not the

accepted by the processor.

So, this pending bit so at the end of the 7.5 ISR also if I check the pending bit, I will find

that RST the 6.5 interrupt had come. So, I can directly branch to the 6.5 interrupt service

routine from there and otherwise, what I have to do is I have to enable all the interrupts

again and that may create some chaos because now many other interrupts may pending

on 5.5 and INTR lines and they will also come into picture ok. So, that has to be avoided.

(Refer Slide Time: 03:15)

So, for that purpose, this RIM instruction is useful. So, here is an example set the mask

to enable RST 6.5 without modifying the masks for RST 5.5 and 7.5. So, what you want

is the current setting for 5.5 and 7.5, they should continue only the 6.5 setting should be

6.5 interrupts should be enabled.

So, first of all we have to do a RIM instruction to find the current setting of 5.5 and 7.5

masks, then we can use the SIM instruction to set the masks using this information. So,

this RIM and SIM instructions, since they use the accumulator, we can use some logical

operations to masks the un needed values ok, the un needed values returned by the RIM

and SIM instruction and by this RIM instruction and then turn the turn into the values

needed by the SIM instructions.

(Refer Slide Time: 04:10)

So, here is the example. So, you see we assume that RST 5.5 and 7.5 are enabled and the

interrupt process is disabled. So, as a result since that this IE is 0 and 7.5 and 5.5, they

are not masked and this is 6.5 is masked. So, what we do is the first we execute a RIM

instruction that gives me the current setting which is like this and then we want to we

want to set the interrupt mask in some fashion. So, for that we have to set this we have to

prepare for this SIM instruction in the SIM instruction bit number 4 is the MSE Mask Set

Enable. So, for whatever value I have got so with that; so, if I do an ORing with this

particular pattern ok. So, then this bit becomes equal to 1.

So, the with this. So, if you can do this ORing. So, you get the bit number 4 set whatever

be the value that you read here. So, if you do or with this 0 8 hex. So, bit number 4 is set.

Now, what we want is that the serial data should be turned off. So, serial data turn off.

So, so this SDE value should be equal to 0 SDO, it is can be 0 or 1, it does not matter; so,

it is made 0, then RST 7.5 flip flop. So, that is do not we do not want to reset the RST 7.5

flip flop. So, this bit is set to 0 and this RST 6.5 is turned off. So, the mask and set the

mask for RST 6.5 turn off. So, 0.5 turn off is this 1 M 6.5. So, that is made 0 and don’t

cares for the and this and the mask for do not reset the mask for reset for RST 7.5 and set

the mask for 6.5 off. So, mask for 6.5 has been set off and don’t cares are assumed to be

0.

So, rest of the things they will taken as 0. So, this way we can get we can apply this

particular setting. So, when I do an and immediate with this. So, I will get this particular

bit pattern and this bit pattern when it is put into a SIM instruction. So, it will do the

desired thing that we want. So, this way, we can use this RIM and SIM instruction along

with a few logical operations to set this interrupt line interrupt enable and for selecting

some interrupt pins and getting them masked out or enabled so like that.

(Refer Slide Time: 06:50)

Another very important interrupt that we have not discussed so far is the trap. So, this is

the only non maskable interrupt that 8085 has; so, all other interrupts they are maskable,

but trap is a non maskable interrupt. So, it does not have any effect the EI and DI

instructions, they will not have any effect on the trap line. So, it does not need to be

enabled because it cannot be disabled it has the highest priority amongs all the interrupts

and in fact, so, this trap is also known as RST 4.5. So, this trap is also the RST 4.5. So,

when this trap occurs then the processor will jump to 4.5 into 8 that is location 34. So,

sorry location 36 in decimal; so, this will be jumping to location 36 so that is between

this RST 4 and 5 so that is why it is called RST 4.5 and the corresponding address is 36

decimal.

So, it has the highest priority among all the interrupts, it is edge and level sensitive. So, it

is a combination of this edge sensitive and level sensitive. So, it is edge and level

sensitive it needs to be high and stay high to be recognized. So, since it is a very

important interrupt. So, this is often used for power failure or some emergency condition

now if there is a glitch that is coming on the power supply line and it is sensed as an

interrupt. So, that is that may be undesirable.

So, what is required in case of trap to be sensed is that it should be there should be an

edge as well as it should there should be it should be high for quite some time for it to be

sensed. So, it is edge and level sensitive, it needs to be high and stay high to be

recognized and once it is recognized, it will not be recognized again until it goes low

because it because of the nature that it is it is edge and level sensitive. So, that to bring

that edge sensitivity into picture. So, once it is sensed it must go low and then only it can

come high again.

(Refer Slide Time: 09:09)

So, sorry; so, next we will be looking into the internal priority, internal priorities that we

have o internally 8085 implements an interrupt priority scheme and this interrupts are

ordered like this the trap has the highest priority followed by 7.5, 6.5, 5.5 and INTR;

however, trap has lower priority than the hold signal that is used for the DMA. So, the

DMA will come later. So, this is for Direct Memory Access so for doing some operation

data transfer directly between memory and the secondary storage without involving the

microprocessor.

So, for that type of operation we need this direct memory access or DMA and this is this

hold and hold acknowledge. So, these are the two pins associated with that operation. So,

they are. So, when the hold signal comes then what the processor does is that it it

releases all the buses; so, it just as if it will not use any external bus. So, it will stop all

the operations and the bus is given to some other master. So, that these data transfer to

memory can take place directly about this trap has got lower priority than the hold signal.

(Refer Slide Time: 10:21)

So, to summarize; so, if you look into different interrupts the maskable; so, this interrupt

INTR RST 5.5, 6.5, 7.5, they are all maskable. So, where trap is non maskable masking

method INTR is DI EI RST 7.5, 5.5 and 6.5, 7.5. So, DI EI and SIM, trap cannot be

masked so there is nothing. So, this INTR is not vectored, but remaining interrupts, they

are vectored interrupts because for them, we know what is the address at which the

execution the I the interrupt service routine should be located.

And so, whether any of this interrupts have got memory yes RST 5 7.5 have got a

memory others do not have. So, others they require that it should be high for that 17.5 T

states for getting it sensed in the worst case. Triggering method so we have got INTR

level sensitive 5.5, 6.5, they are also level sensitive 7.5 is edge sensitive and trap is level

and edge sensitive. So, the edge should be there followed by it should be high for quite

some time. So, this way this 8085 interrupts can summarize their different features.

(Refer Slide Time: 11:42)

Next, we will be looking into another important concept which is known as direct

memory access. So, this direct memory access is a process where data is transferred

between 2 peripherals directly without involvement of the microprocessor.

(Refer Slide Time: 12:03)

So, it is like this that if we look into this data transfer process between any processors.

So, suppose this is our 8085 processor and this is the memory ok. So, you have got your

address data bus line connection and this 8085 is connected to some external disc

external device which may be a hard disc for example.

Now, if it is required that some data has to be transferred from this hard disc to memory

then what is required is that 8085, if I do it through this 8085 processor, then what it will

do it will read values from this hard disc and then write something on to the memory

write the value on to the memory, then again, it will read the next byte from the hard disc

and it will write the byte on to the memory so it will go like. So, this is this is known as

the programmed I O, programmed input output operation.

Difficulty with this programmed input output operation is that this the device the I O

device that we are talking about. So, they are generally much slower compared to this

processor like 8085. So, that a good amount of time 8085 just waits for the for the device

to be ready to transfer the, to give the next byte next byte of data and so that 8085 can

read it and transfer. So, that is the problem with the programmed I O.

There is another type of in data transfer which is known as interrupt driven I O. So,

interrupt driven I O. So, it is like this that this processor. So, this processor does not tell

the device whether you are ready with the data the device rather it gives an interrupt to

the processor ok. So, it gives an interrupt to the processor telling that I am ready with the

data. So, the 8085 goes into the ISR. So, in the ISR 1 byte of data or some amount of

data whatever data this device is ready with are read and they are put into the memory.

So, the point is that now this processor otherwise it is not waiting for the device to be

ready. So, whenever the device is ready so it will tell the processor by an interrupt and

that interrupt will be in the interrupt service routine will be actually the data transfer job

that is done.

So, again; so, this is an improvement over the programmed I O, but it is a still not that

much fast.

(Refer Slide Time: 14:46)

So, what is done and the third possibility is known as the Direct Memory Access or

DMA. So, direct memory access. So, we have got the 8085 processor. So, we have got

the memory. So, this memory is connected to the 8085 processor plus there is another

device which is known as the DMA controller or direct memory access controller.

So, what this direct memory access controller does is when 8085 tells this direct memory

access controller and that I want to get some data transferred. So, this I O device; so, this

is connected to the DMA controller. So, this I O device is connected to the DMA

controller. So, this 8085 tells the DMA controller that I want some data to be transferred

from the I O device to the memory or vice versa from memory to the I O device. So, this

DMA controller will do that job. So, it will do transfer the content to the memory ok. So,

after; so, this processor is free. So, processor can do anything else it wants to do. So, it is

if it definitely it cannot use the memory, but it can do other computations that it within

the processor and all.

So, those type of cases operations it can do and the DMA controller will do the transfer

and when it is done with the transfer, then it will again tell the processor that I am done

ok, I am done with the operation and then this 8; 8085 will restart will continue with the

previous operation that.

Now, the point that is to be noted is that for reading or writing something to and from

memory. So, what we need is that the memories address bus and data bus and control

bus. So, they are to be given proper values to the memory.

Now, in this situation what is happening is this is memory has got two drivers, one of this

address data control buses are coming from this 8085 and in an another situation it is

coming from the DMA controller. So, actually though I have shown it like this, but in

reality the connection is like this fine.

So, we have got two drivers for the same bus; so, to solve the problem. So, what is done

is that when 8085 tells the DMA controller that it will lead to want some data transfer

through DMA mode. So, it will release the control here ok, it will release the control of

this bus and now this DMA controller will control this bus and after sometime when the

transfer is over when it is informed by the 8085 to the 8085 that it is over then this is this

control is taken off and this control is re established.

So, that way this whole DMA operation works and you remember that there were two

pins hold and hold acknowledge, 2 pins of 8085. So, they were actually responsible for

this DMA type of operation. So, we will see how this hold acknowledge pins, they are

going to be useful for this transfer.

(Refer Slide Time: 18:02)

So, this direct memory access is a process where data is transferred between 2

peripherals directly without the involvement of the microprocessor. So, processor is not

involved in the in this transfer the process employs the whole pin of the microprocessor

the external DMA controller sends a signal to on the hold pin. So, the to the

microprocessor that you please release the buses.

The microprocessor completes the current operation and sends a signal on the hold

acknowledge and stops using the buses. So, it releases the buses that is what that is what

I was saying and once the DMA controller is done so it turns off the hold signal and the

microprocessor takes back the control of the buses. So, this is how this whole operation

take place by means of this hold signal.

(Refer Slide Time: 18:55)

So, next we will be looking into the serial input output operation. Now this serial input

output operation means that I want to transfer data serially, but before going to that. So,

we want to discuss about the parallel the instead of parallel the serial the parallel I O

transfer a bit. So, what happens is that ok. So, this as I said that the programmed I O or

interrupt driven I O whatever you call it. So, ultimately the device have the processor has

to read from the device or it has to write on to the device. Now, if I have forgot say if this

is the 8085 processor.

(Refer Slide Time: 19:37)

And in this 8085 processor so I have got some memory and this memory it ranges over

the address is say 0 to say 6 K or say 16 kilobyte 0 to 16 kilobyte. So, this range is this

range by the memory by the memory. So, this address data buses are connected there by

means of decoder and all. So, this is the address data and control bus connections I am

not showing the latches and latches and all demultiplexing the address data bus and all.

So, I am not showing it separately assuming that all those are there.

Now, if there are a few devices connected to this processor. So, this is device 1, device 2,

device 3 like that now these devices are to be also accessed now this for accessing a

particular device. So, the processor needs to tell what is the corresponding address now

while telling this address 8085 can do it in 2 different ways the I O address that it is

talking about it can be classified into two categories one is called memory mapped

address or memory mapped I O another is called I O mapped I O in case of memory

mapped I O. So, what happens is that if this is the 8085 processor and these are the

memory chips. So, suppose I have got 2 memory chips in my system; M 1 and M 2 and

we have got a few devices D 1, D 2, D 3, etcetera.

Now, this address decoder that I have the decoder the address decoder; so, it has got

some of the bits of the address lines and it is generating the enable signals for the

memory chips. So, some of these lines may be connected to the enable signal of the

devices as well, fine. So, if I do this thing then what happens is that there is no difference

between a memory location and a device location; so, as far as the processor is

concerned. So, it just needs to know what is the address of this device and that we what

is; so, for a memory location the address is 16 bit. So, this device is also nothing, but a

16 bit address.

So, these are some special addresses that this memory should that that the processor

should know, like if I have an instruction like LXI say if I have an instruction like MOV

A comma M and before that if I if I do 1 LXI H comma some 16 bit value 16 bit address.

Now, if this 16 bit address happens to be one location within this memory chips M 1 and

M 2, then this MOV A comma M instruction. So, it will read from the memory location

and get it into the 8085.

On the other hand, if this 16 bit address is such that the it is it is it is selecting this device

then in the next MOV A comma M instruction. So, it will read from the device and get it

into the memory. Similarly, if this 16 bit address is actually such that this decoder

enables this line D 2, then this D 2 will be selected as the that content will be selected

and put into the 8085 accumulator.

So, this type of operations; so, they are known as memory mapped I O operation because

I O devices, they are treated as nothing, but some extension of the memory locations ok.

So, this type of I O operation so they are known as I O sorry memory mapped I O

operation. So, the access is exactly like the memory addresses.

On the other hand, if you look into this 8085 processor; so, you know that there is

another special pin which is known as I O M bar. So, whenever the processor is doing

this I O or this memory operation. So, it is making this I O M bar line equal to 0 ok. So,

that is so far we have ignored this line, but we can use it for a special purpose like we can

make it like this.

(Refer Slide Time: 24:28)

So, say this is the 8085 processor and here I have got the decoder corresponding to the

for the memory chips. So, this decoder is dedicated for this decoding of the memory like

this enables this enables this. So, this enables this like that.

So, we can have another decoder which we can dedicate for the I O devices D 1, D 2, D

3 like that. So, this D 1 this devices so, they are enabled by this now the address line. So,

they go here as well as the address line they come here, but the I O M bar line that we

have here. So, this I O M bar line is connected to the enable line of this decoder and the

inverted version of that is connected to the enable line of this decoder fine now the 8085

it so for I O operation; so, it has got another type of instruction which are known as in

and out instruction fine. So, this in instruction is in and one 8 bit address and this out is

out and 8 bit address.

So, in instruction what happens is that it reads from the data bus and the content comes

to the accumulator register. So, whatever is available on the data bus comes to the

accumulator register similarly the out instruction whatever be the content of the data

accumulator. So, that is put on to the data bus line now this for this in instruction and out

instruction this execution. So, this I O M bar line where bit is equal to 1 where as for the

instructions like MOV A comma M where it is doing memory operation this I O M bar

line is made equal to 0.

So, this in out instruction; so, when they are executed this line is equal to 1 as a result

these decoder is enabled and these decoder is disabled. So, it will not enable any of this

memory chips, but it will be depending upon the address that we have here. So, it will

enable one of these devices and that device value. So, whatever be will be the value put

on to the data bus. So, all of them are connecting to the data bus all of them are

connecting to the data bus. So, like this and this is connected to the data bus of the

processor. So, this is the data bus of the processor.

Now, if I do this if I do this then this is the data bus. So, for this in out type of operations;

so, it will get the data from this devices onto this data bus and that will come to the 8085

chip where as for this memory operation so it will get it from there. So, the point is that

this in out instructions. So, they are operated in the I O mode and they come under the

heading called I O mapped I O because the I O devices. So, they are having a separate

decoder.

And they are having the I O addresses and maps separately, but only difference is that in

case of I O mapped I O this in out instruction the address bus is 8 bit. So, it is not 16 bit.

So, you can connect up to 256 devices only.

Now, but the advantage that we have is that this type of instructions. So, they have got

only the length is only 2 bytes where as if you are having some LDA instruction LDA A

comma some 16 bit address which load some 16 bit value which load some memory

content to the address is this 16 bit value into the a register. So, this instruction is a three

byte instruction ok.

So, that way memory mapped I O the instruction sizes are larger for I O mapped I O the

sizes are small, sizes are 1 byte less and as for the operation is concerned. So, it takes

less number of clock cycles because it has to read only 8 bit. So, so it is taking only 2

machine cycles that is 4 plus 3 7 cycles where as this memory operations. So, it is going

to take some. So, this LDA instruction; so, this takes 3 plus 1; 4 machine cycles that is 12

plus the 9 plus 4 that is 13; 13 T states will be required for the LDA instruction. So, that

will be there.

So, that is how this memory mapped I O and I O mapped, I O is there and in case of that

it is the users choice of course, you need some extra hardware in case of I O mapped I O,

but we can do that we can use it for doing the I O operations at a much lower cost as far

as the execution time is concerned.

