
Digital Circuits
Prof. Santanu Chattopadhyay

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture – 58
8085 Microprocessor (Contd.)

In our last class we started discussing on 8085 non vectored interrupt process. So, as we

know that in case of non vectored interrupt, the interrupting device it should provide the

ISR addresses (Refer Time: 00:25) address for the interrupt service routine.

(Refer Slide Time: 00:26)

Now, for their pre requisite for this Non-Vectored Interrupt Process to be initiated is that

the interrupt process should be enabled using the EI instruction. So, somewhere in the

beginning, so when the 8085 processor is reset, this all the interrupts are enabled.

However, due to due to the course of some program execution maybe the interrupts have

been disabled. So, through some DI instruction, so in that case, these interrupt will not be

sensed. So, it is required that before this non vectored interrupt it can sent given interrupt

to the processor, the process should be enabled by means of an EI instruction. 8085

checks for an interrupt during the execution of every instruction.

So, as I said it is the last, but one clock cycle of an instruction at which the interrupt

status is checked. So, that way, it is at the end of that instruction, so it will check whether

an interrupt has occurred or not. And if an interrupt has occurred, then instead of

executing the next instruction in the sequence the processor goes to the interrupt service

routine. If there is an interrupt, the microprocessor will complete executing the current

instruction and start a restart sequence. So, restart sequence, it is basically a sequence of

operations by which the service routine can be started.

So, first of all, it resets the interrupt flip flop. So, there we will see later that there is an

interrupt enable flip flop. So, that flip flop is reset in the beginning of the restart

sequence. And also, you remember that there was a pin of 8085 called interrupt

acknowledge. So, INTA which is an active low signal and this is activated. So, interrupt

acknowledge line is made low. So, from the device an interrupt signal has come and this

interrupt acknowledge signal is generated by the processor and then it goes to the device.

So, device will now understand that my interrupt has been acknowledged. So, I have to

provide the service routine address. So, upon receiving the interrupt acknowledge signal,

the interrupting device is expected to return the op code of one of the 8 RST instructions.

So, RST is the restart instruction. So, it takes along with it one value which is a 3 bit

value. And so, 3 bit value means it can go from 0 to 7. So, 8 possible RST instructions

are there starting with RST 0 going up to RST 7 as you will see subsequently.

(Refer Slide Time: 03:04)

So, the process the device somehow sends an RST instruction to the microprocessor. So,

microprocessor now executes the RST instruction received from the device on the data

bus lines. It saves the address of the next instruction on the stack and jumps to the

appropriate entry in the interrupt vector table. So, the appropriate entry is determined by

the RST instruction that it is executing. So, based on the value of n in the RST n

instruction, so it goes to a particular location in the IVT, Interrupt Vector Table and it

starts executing from that point.

Now, the IVT entry, so it must redirect the microprocessor to the actual service routine.

Actually what happens is that in that; so all the 8 RST services that we have. So, they are

clubbed together. So, we do. So, if we start writing the interrupt service routine from that

point onward in the IVT, then it will not have space for the for the interrupt the interrupt

service routines for other interrupts.

So, what is done? We normally put a jump instruction there, so that the processor

executes the jump instruction and somewhere later the ISR maybe there. So, it is like this

that suppose upon getting the interrupt the, so it comes to this particular location in the

IVT. So, if your actual interrupt service routine is located from say location say 8000

onwards. So, this is the actual ISR. So, what it does is, it put puts a jump instruction here

jump 8000.

So, upon getting the interrupt the processor comes to this point and execute the jump

instruction. As a result it goes to the ISR and executes the Interrupt Service Routine. So,

that is how this I that that is what is meant here the IVT entry must redirect the processor

to the actual service routine. Now, the service routine must include the EI instruction

because as soon as an interrupt occurs in the restart sequence the, the all the interrupts

are disabled. And so, the very first thing that the interrupt service routine should do is to

use the instruction EI to re-enable the interrupt process.

So, if it is not re enabled, then a subsequent interrupts will not be sensed by the

processor. So, that may be a problem. Of course, if the user wants that I the my interrupt

service routine should not be interrupted further then may not put the EI instruction at the

beginning rather maybe towards the end of the interrupt service routine, this EI

instruction is kept. So, at the end of the service routine, there must be one return

instruction that returns the execution to where the program was interrupted.

So, every interrupt service routine should end with a return instruction and upon getting

this return (Refer Time: 06:00), the processor will take out the return address from the

stack and it will return to that location.

(Refer Slide Time: 06:08)

Here is actually that restarts that IVT interrupt vector table. So, we have got this as I said

that there are 8 possible non vectored interrupt RST instructions, RST 0 through RST 7

and each of these should send the execution to a predetermined hard wired location.

So, if the instruction is RST n, so what the processor does is that this n is multiplied by 8.

And whatever be the result, so it jumps to that particular location. For example, this RST

0 it is transferring the control to the memory address 0, then RST 1, it will transfer the

control to memory address 8, RST 2 will transfer to memory address 16 like that.

So, you can see that the RST 0 instruction is equivalent to this call 0000 hex. Similarly,

RST 1 is equivalent to call 0008 hex. So, like that we have got this RST instructions they

are equivalent to this call instructions. So, so you can understand that between RST 0 and

RST 1, we have got only 7 by, only 8 bytes of location are free. So, if your ISR is very

short, it can hold it can be held within 8 bytes.

So, you can start immediately you can start writing the interrupt service routine from the

location from that location itself. So, but normally we any meaningful ISR will have

more than 8 bytes with length. So, it is not possible to hold that entire interrupt service

routine. So, that is why, we normally put a jump instruction there and jump to the actual

ISR service actual ISR which is located somewhere later in the memory. So, this is how

this processor this RST instructions are sensed by the processor.

(Refer Slide Time: 08:11)

So, coming back to the restart sequence, so restart sequence it is made up of three

machine cycles. So, that it is actually the execution of the RST instruction. So, how it

does in the first machine cycle, the microprocessor sends the INTA signal and while this

INTA is active the microprocessor reads the data lines expecting to receive from the

interrupting device, the opcode for the specific RST instruction. So, RST n is a single

byte instruction out of in which the 3 bits are reserved for the value of n and rest of the

bits identify the opcode RST.

So, what it says is that in the first machine cycle. So, maybe, may be the processor is

executing some instruction and the end of it finds that there is one interrupt ok. So, RST

n there is an interrupt on the INTA line. So, in the next machine cycle next instruction,

after completing the current instruction; in the next machine cycle, it will activate the

INTA signal. Getting the INTA signal, we said that the device is expected to put the

address of the ISR onto the data bus which is in terms of the of the one RST instruction.

So, after putting INTA signal onto the to the device, the processor will read the data bus

lines because it is expecting that the device has put one RST instruction onto the data bus

lines. So, after getting that, in the second and third machine cycles, the next return

address is saved onto the stack the 16 bit return address for the next instruction is saved

onto the stack. And depending upon this value of n in the RST n instruction, the

processor jumps to the address associated with the specified RST instruction. For

example, if it is RST 2, it will jump to the location 16. So, like that it will jump to the

corresponding location and start executing program from there.

(Refer Slide Time: 10:10)

 The location in the IVT associated with the RST instruction cannot hold the complete

service routine as I said that service routine, we have got only 8 bytes free for holding

this interrupt service routine at the location of the IVT. So, actual routine is written

somewhere else in memory and only a jump instruction to the ISRs location is kept in the

IVT block. So, normally this is the standard procedure for writing the interrupt service

routine of any processor. So, in the IVT we keep a jump instruction and from there, it

jumps to a particular some address and in that address the actual ISR is located.

(Refer Slide Time: 10:49)

Now, the question is how and how a device can generate the opcode RST opcode ok. So,

this is a very important thing because device is for some for some special purpose, but it

has to do this additional job if it wants to be interface with 8085 using this INTR line.

So, how it does the, as we know, that any opcode is nothing but 1 8 bit collection of bits

ok. So, device needs to set the bits of the data bus to the appropriate value in response to

a to one INTA signal.

So, this is what has to be done.

(Refer Slide Time: 11:26)

This is the strategy suppose. So, this is suppose this device this is a device and if this

device has got a tri state buffer which is an 8 bit bus and the. So, this side I have got the

microprocessor. So, this side we have the microprocessor, this side we have got that 8085

and this D 0 to D 7, they are actually forming the data bus.

So, this is the data bus line for the 8085. Now, when this interrupt signal came to the

processor the INTR signal came to the processor, the processor has activated this INTA

bar line and this INTA bar line has been connected to a set of tri state buffers. So, when

this line is 0 all this buffers are enabled. As a result, if you look into this connection

pattern. So, these bits are all 1. So, and this bit is 0 and this bits are again all 1. So, if you

look into the 8085 manual, you will find that this particular bit pattern 1 1 1 0 1 1 1 1.

So, this corresponds to this RST 5 instruction, ok.

So, what happens is, when the device gives an interrupt and the processor gives interrupt

acknowledgement, so, this tri state buffers within the device are enabled. So, that this is

inside the device this whole thing is inside the device. So, when these interrupt

acknowledgement comes. So, the device can very easily put the data bus on to the data

bus this bit pattern 1 1 1 0 1 1 1 1 as a result, 1 8085 will read it will understand that this

is a RST 5 instruction and it will jump to the location 5 into 8 equal to 40.

So, it will go to the location 40 and start executing from there. And as I said, most

probably there will be a jump instruction to the actual routine at the location 40.

(Refer Slide Time: 13:38)

So, during the interrupt acknowledge machine cycle, the microprocessor activates the

INTA signal the signal will enable the tri state buffers which will place the value EFH

onto the data bus. Therefore, the sending the microprocessor RST 5 instruction; so this is

the standard procedure by which this interrupt INTR line and the device gets the

corresponding, device produces the corresponding RST instruction for doing the for the

processor to start the interrupt service routine.

Now, you see that this is one of the approach by which a device can generate this RST

instruction. So, there can be many other ways by which it can be done. So, this is just an

example ok. So, some device may be more intelligent and it can do it in a better fashion,

but this is one of the very basic technique where you do not need anything more than a

few tri state buffers to generate the RST instruction.

(Refer Slide Time: 14:40)

Next question is, suppose the INTR line has been activated, so, a device wants to

interrupt the processor microprocessor and it has raise the INTR signal.

Now, how long this INTR should remain high now as I said that the microprocessor

checks the INTR line, 1 clock cycle before the last t state of each instruction. So,

whenever a microprocessor whenever microprocessor executing some instruction, when

it comes to the last but one t state. So, at that time it will try to see whether this I

interrupt, interrupt has come or not. The interrupt process is asynchronous. So, it can

come at any point of time. So, naturally this interrupt must remain active long enough to

allow the longest to allow for the longest instruction.

So, that to be on the safe side, if you want that your interrupt should always be sensed by

the microprocessor, then it has to be done in such a fashion that even for the longest

instruction, the interrupt line is active till the last but one clock cycle. In case of 8085,

the longest execution time is for conditional call instruction which requires 18 T-states.

So, to be sensed properly the INTR pin must remain active for 17.5 T-states ok

So, now you can understand that if I have got a 2 megahertz clock frequency than that is

17.5 divided by 2 megahertz. So, that, so much of time this interrupt line must be high.

So, if the pulse is shorter than that if the interrupt line is not high for that much time it

may. So, happen that the processor misses that point and it is not sensed by the processor.

So, this is the guideline for raising the INTR signal.

(Refer Slide Time: 16:32)

And how long can the INTR remain high? So, that is once it is made high how long can

it remain high? The INTR line must be deactivated before the EI signal is executed. So,

what, so as because as soon as this interrupt occurs. So, the processor automatically

disables the interrupt and before enabling the interrupts again, so you should deactivate

the INTR signal otherwise the microprocessor will find that again another interrupt has

come. So, it will take it the same interrupt. So, it will be sensed twice. So, it will be taken

as two different interrupts.

Now, in case of worst, in the worst case situation the in the ISR the very first instruction

may be the EI instruction. So, once the microprocessor starts to respond to INTR

interrupt, INTA becomes active. So, that way because this EI is the first instruction, so it

becomes active. So, INTR should be turned off as soon as the INTA signal is received as

soon as the processor gets the as soon as the device gets the interrupt acknowledge

signal. It should withdraw the INTR signal. Otherwise there is a chance that in the

interrupt service routine. This enable interrupt will be the very fast operation as a result

the processor will sense the interrupt once more ok.

So, this is the guideline. So, it should be, so when the INTR when the to interrupt the

processor properly, device should be ready to keep the interrupt line high for 17.5 clock

cycles and as soon as the interrupt acknowledge signal is received, it should deactivate

the INTR signal.

(Refer Slide Time: 18:10)

Issues in implementing INTR interrupts, so like can the microprocessor be interrupted

again before completion of the ISR. So now, the question is dependent on the style in

which the ISR has been written. As soon as the first interrupt arrives, all maskable

interrupts are disabled and INTR being a maskable interrupts. So, it also gets disabled

and they are enabled only after execution of the EI instruction.

So, this is specified by the processor designer. So, 8085 designer, so they has they have

told that this is the guide line. Now, the point is that if you are, if you allow the processor

to be interrupted again like if you are, if this is the ISR that I am I have written and my

EI is put here itself, now there is a very high chance that while I am still in the ISR

another interrupt comes from the device.

So, that way it is again another interrupt will be sensed by the processor and it will again

come to restart the ISR. So, that can happen or in the other case, you can put the EI at the

bottom of this interrupt service routine as a result this will not be interrupted again. So, if

it is put at the end, then this interrupts will not be coming again till the first one is over.

That is why the answer is only if you allow it to if the EI instruction is placed early in the

ISR, other interrupt may occur before the ISR is done. So, that that is the problem.

So, if you do not want that, you should put this EI instruction at the bottom. But again

putting at the bottom has got some other consequence because you can that will also

differ other more important instruction interrupts as well.

(Refer Slide Time: 20:04)

So, if you have got multiple interrupts, then which interrupt should be having higher

priority? So, that is one problem. Now, how do you allow multiple devices to interrupt

using the INTR line? So, I have got a single interrupt line. Now if I have got a number of

devices that can that can give interrupt to the, that can use this non vectored interrupt to

the 8085 processor.

Now, how to do this? Now, microprocessor can respond to only one signal on the INTR

at a time. So, it can since it is a uniprocessor system, so, it will be responding to only one

device request. So, we must allow the signal from only one of the devices to reach the

microprocessor. So, that is important. So, somehow we have to do that that processor

does not get interrupt from multiple sources, because there is ultimately there is only one

pin in the microprocessor.

So, you must assign some priority to different devices and allow their signals to reach the

microprocessor according to the priority. So, this is the issue that is we have to somehow

prioritize the devices and some device which has got higher priority should be able to

interrupt the microprocessor before other low priority devices are interrupting it.

(Refer Slide Time: 21:24)

So, how to do this? So, there is a priority encoder 74366. So, I will come to that later. So,

there is a simpler scheme by which you can do this which is known as daisy chaining.

(Refer Slide Time: 21:36)

So, daisy chaining policy is like this, that suppose I have got a number of devices. So,

this is D 1, D 2, D 3, like that and I have got the microprocessor 8085 here.

Now, what I want is that D 1 will have the highest priority followed by D 2 followed by

D 3 fine. Now how to do this thing? So, what we can do? So, we can take this interrupt

line from this individual devices and pass them through an OR gate pass them through an

OR gate to get and they were like connected to the interrupt line of the processor. So, this

is the OR gate we connect them and connect it to the interrupt line of the micro of the

microprocessor.

Now, this interrupt acknowledge line, so this is connected to the interrupt acknowledge

of the first D 1 and then this is the INTA. And this INTA line, so it is passed from the

device D 1 to device D 2 and from device D 2 to device D 3. It is passed like this. So, the

idea is that if first device has raise the interrupt when the interrupt acknowledgement

comes. So, it does not pass this interrupt acknowledge line to the output. So, it just

consumes it.

So, it understands this is for me. So, it generates the corresponding RST instruction for

the 8085. Now, if it happens the if it happens like this that this D 1 has not generated the

interrupt, in that case this INTA line will be passed by D 1 and it will reach D 2. If D 2

had raised the interrupt, then it will use this interrupt acknowledge line to generate the

next to generate the next RST instruction. Otherwise it will pass this interrupt

acknowledge line to the device D 3. So, this way you see the devices which are closer to

the processor, they are having higher priorities compared to the devices that are further

away from the processor.

So, this particular policy is known as Daisy Chaining policy. So, this is very simple to

implement by means of some very simple logic. You can decide whether this devices can

have some simple logic to decide whether the interrupt acknowledge line should be

passed or not ok. So, this is one policy by which we can do this. The other policy that we

have is by means of a Priority Encoder.

So, this 74366 chip, so, this is a priority encoder, this circuit has got 8 inputs and 3

outputs. The inputs are assigned increasing priorities according to the increasing index of

the input. So, 0 has got the lowest priority going to 7. So input 7 has the highest priority

and 0 has the lowest priority. And three outputs, they carry the index of the highest

priority active input. So, this is a decode encoder. So, this encodes this 8 bit input into a 3

bit output.

So, this actually identifies the index of the interrupt line that is the highest priority

interrupt line that we have.

(Refer Slide Time: 25:10)

Opcodes for different RST instructions follow a particular pattern. So, if you if you look

into this opcode for the RST instruction, you will find that it is an it is an 8 bit instruction

in which this bits D 5, D 4 and D 3. So, they will determine the number n in the RST n,

they will determine the value of n. And the rest of the bits are always 1, rest of the all

other bits are always 1. So, bits D 7, D 6 and then D 2, D 1, D 0. So, they are all 1. So,

this allows a 74366 to that to generate this RST instruction directly. However, the

problem that we have is that to change the priority, you have to change the connection

pattern of the devices

(Refer Slide Time: 26:02)

So, we have got a connection like this. So, this is our 8085 processor. Now, this 74366,

so, this is the priority encoder. So, when this device is getting this interrupts, so, this I 0,

I 1, I 2 like that. So, accordingly, it this it passes through this tri state buffer when this

interrupt acknowledge signal comes. So, this buffer is enabled as a result this 3 bit

output. So, it is coming onto this line.

(Refer Slide Time: 26:37)

This 3 bit output is coming here and that connects to the data bus line D 3, D 4 and D 5

and rest of the lines. So, they are raised high ok. So, by this they are all raised high.

Now, when this and this in the 74366 has got an interrupt line; so this interrupt line gives

this INTR signal. So, that is a given to a connected to the 8085 similarly INTA bar line is

connected to this 74138. So, this is another 328 decoder. So, this decoder is enabled

based on whichever device has generated this, whichever device has been accepted here

for the highest priority one. So, that value is again you see passed here. So, as a result,

the corresponding device will get the interrupt acknowledgement, some sort of interrupt

acknowledgement signal.

So, we can say. So, that line will be made 0 and the rest of the lines will be made 1.

Suppose this device 2 had raised the interrupt, device 2 is the highest priority device that

had raised the interrupt, then what will happen, here you will get the pattern 0 1 0, and

upon getting 0 1 0 here this O 2 line will be 0 and rest of the lines will be 1, so the two

line being 0, so it will come to this device 2. So, device 2 sees it as an interrupt

acknowledgement line as if the interrupt acknowledgement line has been passed to it. So

it can accordingly reset the interrupt line and all to the rest of the things.

So, this way we can use this 74366 and 74138. So, these two encoder priority encoder

and decoder in conjunction to interface multiple interrupts with different priority

schemes.

