
Digital Circuits
Prof. Santanu Chattopadhyay

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture - 56
8085 Microprocessor (contd.)

Next, we will be looking into the POP Instruction. So, this is just a reverse of push.

(Refer Slide Time: 00:18)

.

So, in case of push instruction so, we are saving the content of this register pair on the

stack. So, this POP instruction is to retrieve the register pair value from the stack. Again

the POP works with register pair not with a single register. So, the way it operates is that

it copies the content of memory location pointed to by the stack pointer to the E register.

Then implement the stack pointer and then it will be copying the content of this stack

point memory location pointed to by stack pointer into the D register and then implement

stack pointer again.

(Refer Slide Time: 01:01)

So, if we think if we if we this is the if this is the sorry so, if we if we look into this one.

So, if these suppose this is the stack this is the portion of the stack, that we had this is the

memory location and this is the stack. So, stack pointer is now pointing to this place.

Now, when we do a POP D then so, these locations content so, these locations content in

is first copied on to the E register.

So, this the D E pair so, this content it will come to the E register and then the stack

pointer will be implemented. So, stack pointer now points to this location, the next

location and that locations content will be copied on to D register. So, whatever be the

content here will be copied on to the D register and then the stack pointer will be

implemented further. So, that it points to the next memory location ok.

So, that way this POP instruction is executed. So, it is just a reverse of push. So, these

push POP instructions can be useful for saving some value temporarily into the memory.

So, now, how this stack is used? So, during pushing the stack operates in a decrement

then store style.

(Refer Slide Time: 02:28)

.

So, first as if you look into the instructions then you see that here, it for the push

instructions so, it is decrement SP and then after do the copy then again decrement. So, it

is first decrement and then copy, whereas for POP it is first copy then increment. So, we

can say that during push operation the stack operates in a decrement then store style, the

stack pointer is the decremented first and then the information is placed on to the stack

and for popping the stack operators as use then increments. So, as if it is all the copy then

increment style.

The instruction is retrieved from the top of the stack and then the pointer is implemented.

And stack pointer always points to the top of the stack. So, that is by the definition of

this stack data structure, that it to always points to the top of the stack. So, that is taken

care of in the 8 0 8 5 stack operation also.

(Refer Slide Time: 03:20)

.

Stack works in a LIFO fashion last in first out fashion, because the basic 8 0 8 5

designers. So, they have not put any restriction like the order in which you do a push

POP operation, but as a user of the system. So, we have to be careful. So, the order of

push and POP they must be opposite of each other in order to retrieve information back

into it is original location. So, may be I have brought a piece program and that in that.

So, we do not want that wherever from what wherever place I have called this program.

So, whatever register this program uses.

So, let us see that let us say that this uses the registers B C D and B C D. So, these

register pairs it is using, then what I want is that wherever be the program from where

this one has been called. So, after this program has finished. So, that the B C D E register

they should get their old values back. So, we will see later this type of situation occurs

when we consider the interrupts in a system. So, what we want is before coming to this

the routine, whatever be the values of B C D E after finishing the routine the values

should be restored to those.

So, for that purpose we have to we have to save this register. So, you should have 2

instructions here the push B and push D. So, these 2 instructions should be there for

putting it or for saving them on to the stack. Now, at the end what is what is required is

that we have to retrieve the content of this 2 this 2 this 4 register B C D E and how do we

do that? How do we do that is by means of this POP instructions and this popping has to

be done in the reverse direction.

So, that is POP D and POP B. So, if we do not do that so, if we ju[st] by mistake. So, if

we write as first POP B and then POP D then POP D, then the content will be reversed is

not it, because in stack we have saved this B register first and then the D register. So,

while popping out while popping out. So, I should get I should POP out D register first

then the B register.

So, the order in which you have pushed into the stack. So, while popping out you should

do it in the reverse order. So, that is why it is called a last in first out structure or LIFO

structure.

(Refer Slide Time: 06:15)

.

Another, very interesting register that this 8 0 8 5 has is PSW register pair. So, this is

PSW physically the register consists of the accumulator and the status word register ok.

So, this is called program status word or processor status word sometimes. So, this

register pair is made up of the accumulator and the flags register. So, this accumulator

and flag, they constitute this PSW register. It is possible to push the PSW onto the stack

do whatever operations are needed and then POP it of the stack.

So, that way we can use this you can use this PSW register. The result is that the content

of the accumulator and status flags status of the flags are returned towards they were

before operation were executed. Again the same thing many times we want that this a

register and the status they should be available at the end of the program at the end of the

execution of a piece of program. So, for that purpose at the beginning you can do a push

PSW instruction. So, you can have an instruction like push PSW at the beginning and at

the end. So, we can have POP PSW, we can have push PSW and POP PSW as the 2

instructions. So, that is so, that is the utility of this PSW register pair.

(Refer Slide Time: 07:43)

Next, we will be looking into one very important concept, which is known as subroutine.

So, a subroutine it is a group of instructions that will be used repeatedly in different

locations of a program. So, rather than the same instructions putting same instructions

several times they can be grouped into a subroutine and that is called the that is called

from the different locations.

So, this is similar to the procedures that we have or the functions that we have in high

level languages. So, here we write in case of assembly language program some part has

to be a repeated. So, you just put it separately and then we can you can just call this

subroutine.

So, if I if I have a piece of program.

(Refer Slide Time: 08:33)

And, if we find that in that program so; this some parts of the program are similar. Only

some parameter some register are changing and things like that, then what you can do?

So, if this code and this code are very similar. So, you can reorganize this entire code like

this. So, you put a you put a small portion at the ends. So, that is actually the code that

we have here.

So, the since the codes are similar so, put the code only once. And so, this is this will be

called a subroutine and this subroutine is called from different places, where this place

you have got a call. So, this is a call to the subroutine. And, similarly sometime later

again you give a call to the subroutine; so, this is a call to the subroutine.

So, this way what we are saving is we are saving the extras program length that we had.

So, because of this is only twice that I have shown here. So, maybe 1 routine is needed

very often. So, as a result so, it is called several time it is it is copied several times in it is

in a straight line code.

So, if you are putting a subroutine, then that part can be saved and we can make the

program size small particularly in microprocessor base system. So, since the space is a

concerned. So, making them small saves the space. So, that is the utility of this

subroutine. So rather than repeating the same instructions several times. So, they are

grouped together into 1 subroutine and they are called from several locations.

In assembly languages subroutine can exist anywhere in the codes. So, though in my

example I have shown the subroutine to be at the end, but it is not necessary. So, you can

put the subroutine at any place. So, it does not put any restriction in assembly language

programs. So, there is no restriction, but for the readability purpose. So, they should be

puts separately from the main program otherwise readability becomes a problem.

(Refer Slide Time: 10:51)

.

Next in case of 8 0 8 5 there are 2 instructions that deal with subroutines, the call

instructions that is used to redirect the program execution to the subroutine. And the

return instruction or ret instruction used to return from the execution of the execution to

the calling routine.

(Refer Slide Time: 11:08)

So, for example, these call 4000 hex. So, that will that will we that for calling the

subroutine and we have got it return instruction. So, it is like this that if this is my main

program and then so, suppose your main program starts at memory location 1000 and it

goes like this. And, then this is the subroutine that you have starting at location 4000.

Now, somewhere here at location say 2000 I want to give a call to this subroutine. So, for

that purpose the instruction is call this the call 4000 hex. So, the size of this instruction is

3 bites as you can understand that call will take 1 byte and this 4000 H will take 2 bytes.

So, total it is a 3 byte instructions.

So, location 2000, 2001 and 2002 so, they are holding the instruction. And, then when

this instruction is executed what the system does it jumps to the location 4000 and start

executing from this point onwards. Now, any subroutine it should end with a return

instruction or ret. So, when the processor it is your find this ret instruction, because ret is

again 1 byte instruction because it has only the up code part. So, when this ret is found

then the processor will try to come back to the location just after the call instruction, that

is the 4002 ok. So, it will be 4003. So, 4000 4001 and 4002 they were the call

instructions.

So, in this return is executed it will try to come back to 4003. Now, the question is how

does it come back? So, how the processor will know in the return address I am not

mentioning like where to go? So, how the processor will know where to go?.

So, this is actually accomplished by the call mechanism. So, at the time of calling itself

so, this is taken care of that we have got this return address saved on to the stack. So, in

this call instructions push the address of the instruction immediately following the call

into the stack. And, as I have said that call is a 3 byte instructions. So, that immediate

next instruction is at address 4003.

So, this 4003 value will be pushed on to the stack and then. So, what happens is that? So,

if this is the stack. So, value 4003 will be pushed on to the stack and as we know that it is

a 4 0 is the higher order byte and 0 3 is the lower order byte. So, this is the. So, stack

pointer will now point to this location ok.

Now, it will be it will be calli[ng]- now the program counter value program counter

register will be loaded with the 4000 hex as a result from the next instruction the

processor will execute from location 4000 hex. So, after some time so, it will be for

finding the return instruction, and then it will be popping out the content from the stack

to get the return address. So, we will see how is it done?.

(Refer Slide Time: 14:23)

.

So, return instruction so, it will retrieve the return address from the top of the stack. So, it

will get the content from the top of the stack and it will load the program counter with

the return address. And, as we know that the program counter register it actually

determines the instruction, which will be executed next.

So, for the return what we need to do is to get the content from the stack and put it on to

the program counter. So, that is exactly what is done in the return instruction.

(Refer Slide Time: 14:53)

.

So, there can be some caution like the call instruction places return address at the 2 at the

2 memory locations immediately before where the stack pointer is pointing. So, we must

stack pointer correctly before using the call instruction. So, this is so, 8 0 8 5 designers

what they have done? So, they have made the call instruction execution like this that, this

program counter value will be saved on to the stack.

Now, if so, but it does not do anything regarding the stack pointer initialization. So, if by

mistake this stack pointer contains some garbage value, then the program then the

program counter values will be saved onto that memory location. So, that makes it very

difficult like. So, it is the user’s responsibility to ensure that the stack pointer is pointing

to a valid memory address, from where which is not used for any other purpose and the

return address can really be saved onto that address and can be retrieved later. So, before

the call instruction is execute call instruction is put into a code. So, before the first call

instruction, if this is my program somewhere I am doing say call to some address. So,

before doing this call somewhere previously I must have executed this instruction LXI

SP comma some valid address.

So, that the stack bottom is loaded on to the stack pointer stack pointer points to the

bottom of the stack that should happen. And, after that only this call should be executed.

So, this is just a precaution. So, if you do not do this if you do not execute the LXI

instruction then also this call will execute, but the effect may be disaster.

So, this may be that it collapse some other values of your program other data of your

program, because the stack pointer points to those arbitrary locations and then it tries to

write this program counter value there. So, you must save the stack pointer correctly

before using the call instruction. Similarly, the return instruction it takes the contents of 2

memory locations at that top of the stack and uses these as the return address.

So, you should not modify the stack pointer in a subroutine. So, if in a subroutine if we

modify the stack pointer then this will be lost well I if this is my subroutine and there

somewhere I change the stack pointer values. So, LXI is P 2 to something else. And, then

I put a return then what will happen? So, it will be it will be trying to load this stack it

will load the stack pointer is something else. So, when the return is executed. So, it will

try to get the return addresses from that other location not the location, where the stack

this return address was saved while the call instruction was being executed.

So, should not modify the stack pointer in a subroutine, otherwise we will lose the return

address value. So, that we have to be careful.

(Refer Slide Time: 17:54)

So, you can also use this stack to pass data to a subroutine. So, in assembly language

program. So, we can pass the data to the subroutine through registers that is a 1

possibility. So, so this data is stored in one of the registers by calling the program and the

subroutine uses the value from the register. So, by the calling the calling program for

example, if it has to pass and 8 bit value, it may be that it saves the value in the B register

and then calls the subroutine. And, in the subroutine we access the B register to get the

value that has been passed. So, that is one possibility. So, you can use one register to

hold some hold some parameter that you want to pass to the subroutine.

But, since the number of registers are limited and they are also used for some other

purposes. So, it is it is it is better that we have some option ok. So, and that option is via

the stack so, if because memory is very large compared to the data the space requirement

of a program of for the data space requirement of a program. So, we can use this stack

for the purpose of this transfer of this parameters.

So, what the what the program does the calling program instated of storing the content of

this data onto a register, it can store the content in a memory location and the subroutine

will retrieve the data from the location and use it. So, that is possible. So, that way we

can have some memory location and to do that operation.

(Refer Slide Time: 19:40)

Now, if a subroutine performs operations on the contents of the register and then these

modifications will be transferred back to the calling program upon returning from the

subroutine. So, this is called call by reference and if this is not desired then subroutine

should push all the registers it needs on the stack on entry and POP them on return. So,

this is the original value will not be lost. So, what we mean is like this that suppose I

have a subroutine ok.

(Refer Slide Time: 20:17)

.

So, I have a subroutine where the so, this is my subroutine and there I am using this

registers like it this part of the code I am using the registers B C H and L fine. Now what

can happen? When these modifications are done? So, this is so, if this is the main

program from where I am calling this subroutine. So, there is a call instruction here

which actually calls this subroutine and somewhere here I have got the return. So, it will

be coming back to the this point.

Now, if this subroutine modifies this B C H L registers, then once you come back here

you see that this B C H L are all modified. So, whatever be the values of this B C H L

registers here. So, they are modified by the subroutine ok. So, if you want that so, there

may be situations in which you want it. So, maybe it is doing some computation in the B

C H L register values in the registers and then there those values are needed by the

calling program.

So, that is one possibility, other possibility is that this B C H L. So, they were used as

some temporary storage by the calling by the by this subroutine, and the values of the of

those registers of the on the original program they should not be modified.

So, for that purpose so, we have got 2 type of situation one is call by value another is call

by reference. So, in case of call by value the original registers should not be affected,

original registers should not be affected. So, this is the situation I was talking in second

in the second case that is whatever be the values of B C H L here. So, that that should not

be should not get disturbed and call by reference means original registers should be

should be affected they should be affected.

Now, the second part the call by reference implementation is very simple. So, you do not

have to take any precaution to restore the values of B C H L, but if you really want that

this B C H L content should not be lost you have to have a call by value, then the first

few instructions of this subroutine it should be push B and push H.

So, they will be saving those 2 registers and before doing this return instruction ok. So, I

should POP them out. So, I should use instruction like POP H and POP B before the

return. So, that the values are restored. So, the original content of B C H L registers. So,

they are not lost. So, this way we can do this call by value and call by reference type of

implementation by using the stack.

. So, if the subroutine performs the contents of the registers if these modifications will be

transferred back to the they will be transferred back to the calling program upon

returning from a subroutine. So, this is the call by reference and if this is not desired then

the subroutine should push all the registers, it needs on to the stack on entry and POP

them on return. So, this is the original values are restored before execution returns to the

calling program. So, that has to be done.

(Refer Slide Time: 24:01)

Now, push and POP as we have already say that the push and POP should be used in the

opposite order the order in which you push the registers you should POP in the reverse

order. And, there has to be as many POP’s as there are pushed ok. So, if the number of

suppose for example, when these see the number of push is say 4 and number of POP’s is

three; that means, the situation is like this is that when you are calling a subroutine you

know that first if a first the return address is saved on to the stacks. So, P C high and P C

low. So, if you draw in terms of a stack so, it is like this first the P C high will be stored

then the P C low will be stored.

And, then if you if you say that I will be I have pushed this registers B and C, then the C

register B register will be saved here, then the C register is saved here then if I push D

and E, then E register will be saved here and D register will be saved sorry D register

will be saved here, and E register will be saved here. Now, while doing the POP so,

naturally when you are returning so, it is desirable that when you are returning the stack

everything has been erased from the stack and the stack has got this P C L and P C high

at the 2 top most entries.

So, if there is a mismatch in the number of POP’s push and POP’s like if may be I have

just popped out these 2 by using a POP instruction and I have did not do any further

POP’s. So, the stack top actually contains the register values B and C the old values of B

and C. Now, if you do a return now then this C register value will go to P C low and the

B register value will be go to P C high, and that is dangerous. So, it will take your

program to somewhere else not to the point from where the subroutine was called. So,

this ret statement will pick up the wrong information from the top of the stack and the

program will fail and it is not advisable to push put to this push and POP inside a loop.

Because, it is often very difficult to judge like how many pushes are pops will be done

and whether they are really balanced or not, because the last iteration of the push POP

last iteration of loop normally it comes out without executing the body. So, in those cases

it is difficult to ensure that this push POP they will be matching.

So, you try to push this push and POP instructions outside the loop and if you are if it is

very much necessary to put inside the loop body, then ensure that it is put at the

beginning of the body and popped out at the end of the body and they are always

executed. So, it is not there in some cases some the POP may not be executed it should

not happen like that. So, that way we have to be careful with this push and POP

instruction while writing the subroutines.

