
Digital Circuits
Prof. Santanu Chattopadhyay

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture - 52
8085 Microprocessor (Contd.)

 (Refer Slide Time: 00:18)

So, as far as the sign flag is concerned, so as I said that it is used for indicating the sign

of the data in the accumulator. So, after you have done some operation, if the

accumulator content becomes negative, in that case the sign flag will be set to 1; and if

the accumulator content is positive then it will be 0.

(Refer Slide Time: 00:36)

So, then the 0 flag, so if the result is obtained is after the after doing the operation is 0.

Then this is carry 0 flag is set and following an increment or decrement operation of the

of the register. So, if you are doing some increment or decrement or some registered then

also this 0 flag is set.

So, for example, if I have got an instruction like say we have got some instruction like

say decrement B ok. So, this B register value will be decremented and this decrement

operation if it is either if the B register content becomes 0 due to that then also the 0 flag

will be set or maybe increment operation. So, INRB, so these are not on the A register

ok. So, with the other registers also this is possible.

Now, the carry flag, so carry flag is set if there is a carry or borrow from the arithmetic

operation. So, if the carry is generated if you are doing an add operation ok. So, after

doing the addition if a carry is generated from bit number 7 or if you are doing a subtract

operation then a borrow may be generated from bit position 7. So, that way this carry or

borrow if it is generated due to arithmetic operation then the carry flag will be set.

(Refer Slide Time: 02:02)

Now, auxiliary carry, so auxiliary carry flag is set if there is a carry out of bit 3. So, this I

have already explain, so bit position three onwards if there is a carry due to either carry

or borrow ok. So, either addition or subtraction instruction. So, carry or borrow is

generated from bit 3 then this auxiliary carry will be set, parity flag is set if the parity is

even and is cleared if the parity is odd.

So, 8085 it follows an odd parity structures. So, if the number of bits in the accumulator

is even then this parity bit will be set. So, that the total number of bits total number of

bits become odd. And if the number of bits in accumulator is odd, then this parity bit will

be set to 0 telling that this is a the number of ones there is already odd. So, this way this

parity flag is going to be used and some programs. So, it can use this parity flag to know

whether the number of ones in the accumulator is even or odd. So, we do not need to

count we need to check separately. So, we can just do a check on the parity flag and take

a decision.

(Refer Slide Time: 03:14)

So, if you look into the internal architecture. So, we have already seen that general

purpose registers the accumulator and the flags. Now next we look into the program

counter, so there the program counter register PC. So, this is a 16 bit register and this

register is used to control the sequencing of execution of instruction. So, as I said that at

any point of time this program counter value it tells me, what is the address of the next

instruction to be executed.

So, it always holds the address of the next instruction and it is auto incremented. So, as

soon as we are accessing the next instruction this program counter value will be

incremented, and it will point to the next address from where the fetch has to be done.

(Refer Slide Time: 04:09)

So, since it holds and address, so this is a 16 bit register and there is a stack pointer

register. So, stack pointer this is also a 16 bit register, and it point it points to some

memory location and this the memory this register points to is a special area called stack.

So, this stack is used for holding the returner like in high level language program.

So, we are writing procedures and we know that from some main routine. So, we can call

a procedure and from they are the from the procedure you come back to the main routine

when the procedure is over.

Similarly, when you are writing program in assembly language in the assembly language

then also you can write something called a subroutine. So, you can jump from the main

program to a subroutine and after finishing that subroutine you can come back to the

point at which you have called at subroutine, now this return address has to be saved

somewhere. So, that at the end of the subroutine the processor will know where to go

back ok. So, this return address is saved in the stack and the stack pointer is used for

pointing to the memory location where the last address has been stored.

So, this stack is an area of memory the that is used to hold the data that will be retrieved

soon. So, this may be that return address or it may be some parameters that we have

passed from this main program to the subroutine. So, like that so they are they can be

retrieved from the stack. And it is usually accessed in a last in first out fashion that is

quite obvious because, whenever you are this is your main program and from here.

So, you have this is the main program and from here, so you have called a subroutine.

So, this is the subroutine S 1 and within the subroutine somewhere here you have called

another subroutine say S 2. Now when S 2 is over, so you have to go back to this point

continue the execution and then from this end so you have to go back to this point.

So, this is in the so what so whenever you have jumping from M to S 1. So, if this is the

stack in the stack you are saving the return address. So, you are saving this particular

return address, so let us call it star 1. So, star 1 is saved here then when you are going

from S 1 to S 2 that return address S 1 return address is saved here star 2 ok.

Then from when S 2 and so we take out this value and come back to S star 2. So, that is a

so the number star 2 enter last into the stack, but it is taken out of the stack at the earliest.

So, that is how it is called last in first out. So, whatever enter last will be taken out first.

So, this way we can this stack will say it can be used for doing some operation.

(Refer Slide Time: 06:55)

There are some non-programmable registers like say instruction register and decoder,

this instruction register this is a special purpose register is also known as IR. So,

whenever and instruction is fetched from the memory. So, we have got this we have got

this the fetched pattern stored in the instruction register. And from the instruction register

it goes to the decoder the decoder will try to identify the meaning of the instruction.

So, this instruction is stored in the instruction register after fetched by processor and the

decoder will decode the instruction into IR. So, this instruction register, so this is a being

read and written, but from the users point of view. So, this instruction register is not

accessible because, user will not be able to write something on to the instruction register

or read the content of the instruction register through some program.

Now, there is a internal clock generator circuitry. So, the externally, so you have to

connects a clock some crystal. So, if you connect clock with crystal 3.125 megahertz

then outs the externally. So, there is a externally we connect this a crystal of 6.25

megahertz, and internally it is divided by 2. So, it becomes 3.125 megahertz ok, so that is

the clock frequency at which this 8085 will work.

(Refer Slide Time: 08:24)

Then there are address and data buses, so this address bus has got 8 signal lines A8 to a

15, which are unidirectional the other at 8 address lines are multiplexed with the 8 bit

data bus. So, this AD 0 through AD 7 they are bidirectional and such they are both the

purposes of the lower order address bus A 0 to A 7 and the data bus D 0 to D 7,

simultaneously it is not at the same time precisely at the same time.

So, so when this address data bus this AD 0 to AD 7 is used as address bus. So, it is not

used as date bus and similarly when it is used as a data bus, it is not used as address bus.

So, during the execution of the instructions, so this the lines carry the address bits during

the early part and then during the later part of execution they will carry the data bits.

So, basically if you are trying to access memory, so first you have to give the address and

while giving the address. So, the address higher order part is an A8 to A 15 and the lower

order part is in A0 to A7. After sometime when the address has been noted by the

memory then you can, we can we can withdraw the address from the address bus.

And now whatever value this memory put on to the data bus it comes as AD0 to D7 to

the processor. Similarly, if you are trying to write something on to the processor also to

the memory also the same thing the first you put the address. So, memory understands

the address then you withdraw the address and put the data bus content. So, to be written

ok, so that is so now, the part acts as the data bus.

So, this in order to separate this address from data, so we can use a latch to save the

value before the function of this bits changes. So, as I said that for initially for some time

this A0 to A7 holds the address. So, in most of the memory design, so will find that this

address bus content has to be held continually for that purpose we can have some

external latch by which this address value is latch to there.

(Refer Slide Time: 10:30)

So, this higher order address bus, so this has got this higher order address bits they will

remain on the bus for three clock periods for 8085 this memory, memory access takes

three clock cycles.

So, for three clock periods the higher order address bus will hold the value. However, as

far as the lower order address bus is concerned. So, it is only for one clock period this

lower order address bus holds the address bits valid address bits. So, what we need to do

is after this one clock cycle. So, this value is withdrawn, so somehow we need to save

this address somewhere.

So, that the memory sees continually that it has got all those address lines, but this for

that purpose we have to have some external circuitry. So, which will use an external latch

to save the value of AD 0 AD 7 to 0, when it is carrying the address bits and we will use

the ALE signal to enable this latch.

(Refer Slide Time: 11:30)

So, this is the situation, so you see that this A8 to A15. So, actually this side we have got

the memory. So, this side we have got the memory it is this is the memory. So, these are

the address lines, so this these are the address lines for the memory and these are the this

is the data line fine. So, this address lines, so this our this the higher order address bus it

has got A8 to A 15 that is held continually for the entire read operation memory read or

write memory axis operation. However, this AD7 to 0, so it has got this address values

A0 to A7 only for the first clock cycle, and on for the first clock cycle is ALE signal is

also activated.

So, externally what you do you use a latch. So, that this when this ALE is high this value

of A7 to A0 gets the stored into this latch. So, after that after of the first cycle this ALE

signal is deactivated as a result this latch becomes inactive and it does not change its

value even if this lines input to the latch changes since this ALE signal is low. So, latch

will not put that value on to it, so it will continually hold this A0 to A7 at the output.

Now, after that this D0 to D7, so these are the data bus. So, there either the memory will

put the content on to this data bus, or the processor will if it wants to write to the

memory, so it can put the data onto this data bus essentially. So, this process as far as the

memory is concerned it sees this address 16 bit address line continually for four cycles

and it also sees for the for four cycles and it also sees the data for the last part of the

operations. So, as a result, so it can do this read write operation easily. So, this ALE

operates as a pulse during the first clock cycle.

So, when this 8085 is reset, so it every instruction access for the first cycle. So, it will

give a pulse on the ALE line, so this will able this will this will be able to latch the

address, because A0 to A7 is also put on to this AD7 to 0 line. So, that the address will

get latched and then ALE will go low.

So, address will be saved and the line AD7 to AD0 can be used for other purpose that is

there for holding the data. So, this is known as the demultiplexing of the address data

bus. So, in many processers wherever we try to reduce the number of pins, so we can use

this demultiplexing technique.

(Refer Slide Time: 14:22)

So, that pin requirement is low ok, so next is overall picture is like this. So, if I have got

this ALE here 8085 here and we are trying to connect a 1 kilobyte memory chip ok, then

this 1 kilobyte means, so this is the address bus is n bits. So, this A0 to A9, so they are to

be connected and lines A10 to A15, so they total, total address generated by 8085 is 16

bit. So, out of that A0 to A 15 they will goes through an chip selection circuitry. So, in

the in some classes earlier we have seen how to use this decoders to generate the chip

select signals for various chips.

So, some decoding logic will be put here, so that it will select this particular chip for

some address range. Now this A8 to A15, so they are coming directly from the 8085 has

higher order address bus out of that A10 to A 15 is fetch the chip selection logic and A8

and A9 they will come to the lower side, now for the lower order address bus lower order

address. So, AD7 to AD0, so they are passing through this latch and this ALE signal is

selecting the enabling the latch. So, as a result A7 to A0 will be getting latched onto here.

So, ultimately, so this A0 to A7 and from this side you are getting A8 to A9. So, total A0

to A9. So, they are forming the address bus for the memory chip and this D0 to D7, so

that is the data bus. So, it is there now I need to generate the read write signals for the

memory. So, this IOM bar lines, so as I said that if M bar is low then this IO then this is a

memory operation. So, this m bar and read bar, so if these two lines are inverted and then

passed through a NAND gate then that means, so this is the memory read bar signal.

So, when the processor is doing a memory operation and it is doing a read operation then

this memory read bar line will be low. So, as a result it is connected to this read bar pin

of this chip. So, that it is doing the read operation similarly this write bar line and this

IOM bar line. So, they are connected into this gate and it generates the memory write bar

signal. And this memory write bar signal connects to the write bar signal of the chip.

So, this way this is the overall pictures, so if I have got more number of this is only one

kilobyte memory chip interfacing that has been shown. So, if I have got more such chips

then the chips selection circuit will generate appropriate chip selection logic. So, rest of

the thing will remain unaltered.

(Refer Slide Time: 17:03)

Next we will be looking into the most vital part of 8085 like as a user of the system like

how can I what are the operations that I can do with this 8085 processor. So, that defines

the instruction set of this 8085, so 8085 is an 8 bit device. So, it can have up to 2 power 8

that is 22 246 instructions out of that only 246 combinations are used and that represents

a total of 74 instructions. And naturally most of the instructions have more than one

format.

So, we will see that this instructions that we have, so they can be grouped into five

different groups data transfer, arithmetic, logic, branch and machine control. So, these

are the different classes of instructions that we have in 8085, so you look into this

individual classes one by one.

(Refer Slide Time: 17:58)

So, each instruction has got two parts the first part is the task or operation to be

performed. So, this part is called opcode because it is operator it is it is telling the

operation to be done. And the second part is that data to be to be operated on and it is

called operant.

So, we have got opcode and operands, so any instruction can be divided into this opcode

and operand part. Now depending upon the instruction that we have, so number of

operands maybe 0 it may be 1 or it may be 2. So, we will see some instructions like that.

So, say, so based on the number of operands the instructions maybe classified

instructions may be classified as 0 operand, 0 operand single operand single operand or

two operand. So, in case of 8085 we do not have more than two operands per instruction.

So, it is at most two operand, so 0 operand instruction like say the halt instruction. So,

this is A0 operand instruction, so no operand is necessary single operand instruction I

have already given a number of examples like say add B. So, this B is the operand other

operands are other operand that is a is implicit for the instruction. So, you do not need to

specified it separately. So, and this add is the memory, so that way this is a single

operand instruction. So, two operand instruction like there are instruction like, which

says that LXI H comma some 16 bit value, some 16 bit value. So, this tells that this 16

bit value has to be loaded into the HL register pair.

So, we will see this instruction later, but here you see this is an example of two operand

instruction where H is the first operand and the 16 bit value that we have that is the

second operand. So, this way I can have different number of operands in the instructions,

next we will see how this instructions will look like ok.

(Refer Slide Time: 20:13)

So, first category of instruction that we look into, so they are known as data transfer

operation so, these operations they are many they are useful for copying the data from

source to the destination address. So, the instructions that I have common is MOV, MVI,

LDA, STA etcetera.

So, it is for example, we can have instructions like say MOV A comma B. So, this means

the A register gets the content of B register or say MOV D comma E. That means, the D

register gets the content of E register then there is MVI instruction MOV immediate. So,

it is like this MVI A comma 40, so that means the A registered will get the value 40 ok.

Then LDA the format is LDA and a 16 bit address, like 16 bit address like LDA say 2000

H. So, this means the accumulator register will get the content of memory location 2000,

fine then STA is for the it is just the reverse of LDA. So, STA 2000 hex that means,

memory location 2000 will get the content of the accumulator. So, this way we have got

this LDA, STA, MOV, MVI this type of instructions which is basically the copying of

content of one, one register or memory location to another register or memory location.

So, data between they can transfer data between registers like MOV A comma B, data

byte to A register or memory location like say this one MVI A comma 40 ok. Data

between a memory location and A register like say this one LDA we have seen, or data

between IO device and the and the accumulator. So, there, so that can also be done, so

which is IO access will see separately later.

So, that is the IO device access can be done, but that data in the source is not change. So,

these are all copying, so the source content will always remain unaltered. So, source

content is not temporary with, so this category of instructions of they are known as data

transfer instructions.

(Refer Slide Time: 23:02)

So, this LXI instruction, so this 808 so this LXI instruction it may this provides an

instruction to place 16 bit data into the register pair in one step. So, this LXI the format is

LXI register pair comma 16 bit address. So, it is load extended immediate, so it tells that

this LXI B 4000. So, this will tell that the 16 bit value 4000 will be put into the pair B C

ok. So, this B will get 4 0 and C will get 0 0 the upper two digits are placed in the first

register. So, this is a hexadecimal number, so if I talk in terms of 8 bit value. So, 4 0 is

the first byte 0 0 is the next byte 4 0 is the most significant byte 0 0 is the least

significant byte.

So, the most significant byte goes to the B register and the least significant byte goes to

the C register, so this is the LXI instruction.

(Refer Slide Time: 24:02)

So, we can also talk about think about memory as a registered. So, most of the

instruction is 8085 can use a memory location in place of A register like say this

instruction. So, this MOV M comma B, so this memory location will become the

memory register M, so this M comma B. So this tells that the content of a registered B

will be copied on to memory location M, but what is the address. So, I so this, so when I

say BCDE, you are talking about a particular register, but when I say M so, that is it is a

memory location, so this memory location address has to be told and this address is

implied it is implicitly identified by the content of the HL register pair.

So, it is like this if I have got this HL pair has got the value say 1500 hex that is H is

having 15, and this is in H and this 0 0 is in L. Say that is the situation then if this is my

memory this is the my memory and this is the location 1500 and if the content. So, the

now in this instruction what will happen is that it will first go to the HL register and it

will find out what is the content. It finds that the content is 1500 and then it will be

copying the content of B register, content of B register suppose B register was equal to

say 20.

So, suppose B register was equal to 20, so this 20 will be copied onto this location 1500.

So, that is the meaning of this MOV M comma B instruction that we have. So, copy that

the data from registered B into memory location and which memory location.

So, this is given by the 16 bit contents of the HL register pair and HL register pair treated

as a 16 bit address and that is used for identifying memory locations. So, this is the way

by which we can implement pointers ok. So, this HL pair, so it can be loaded with the

address of the pointer. So, if I have as I was telling that if I have got a pointer P now.

(Refer Slide Time: 26:30)

So, you are writing like star P equal to say 10, so that can be done in this way the first

this B registered can be loaded with the value 10 by instruction MVI B comma 10. And

then if this P happens to be the memory location the address of P is say 1000 then this

LXI H comma 1000 hex. So, that will be loading the HL pair with the value with this

value, and then we will be doing this MOV M comma B.

If we do MOV M comma B then this content memory location thousand will get the

value 10. So, this is equivalent to this statement star P equal to 10. So, this is the way by

which pointers can be implemented. So, if we are using this indirect addressing in the HL

register using the HL register pair.

