
Digital Circuits
Prof. Shantanu Chattopadhyay

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture – 50
8085 Microprocessor (Contd.)

We have seen that in a computer system or in microprocessor based system, the

microprocessor talks to the memory to get instructions to be executed, sometimes, it also

gests the data from the memory or from the input output devices.

Now, as far as the user is concerned if the user wants to get some program executed.

(Refer Slide Time: 00:42)

So, the user has to enter the instructions that we have that the program has to in some

binary format into the memory, the memory ultimately stores only binary information.

So, the program that we have so that has to be coded into binary and this binary program

has to be loaded into memory.

Now, when the microprocessor is reset; so, there is a set address from which it starts in

case of 8085 that address happens to be 0. So, it accesses location 0 and reads the first

instruction from there executes the first instruction; they it goes to the next instruction.

So, that way it continues.

So, as you can understand that any computer system for starting at this 0 should have

some monitor program or some operating system program. So, which will in turn transfer

the control to the user program and user after the user program is over, then the control

will be transferred back to the operating system. That is how the whole system works,

but as far as the microprocessor is concerned, it reads instruction from the memory and if

the data is needed from memory.

(Refer Slide Time: 02:03)

So, it will read the data also from the memory; execute the instruction and then it will

place the result back onto memory or onto the output device as the situation may be.

Now, in this execution process, you can understand that there are 3 stages, the first part

of it when it read the microprocessor reads the instruction from memory so, that is

known as the fetch operation. So, it is fetching the instruction from memory. So, it the

processor does not know whether it is an instruction or data or whether it is meaningful

or not, but it will interpret that for the first access will give it the instruction. So, so that

will be that that is called the fetch operation.

Now, after getting the first word from the memory; so, it may so happen that this

processor will understand that this is the processor will understand that it needs some

more part of the instruction or may be more data from the memory. So, for that purpose it

has to decode the instruction.

So, after decoding the processor understands what exactly has to be done whether it

needs data from memory or not, whether it need some data from some input output port

or not I O device, etcetera and then a after getting those data it will execute it in the

execution process may be some operation followed by storage of data; so, this entire

thing comes as the execution.

So, you can say that the way the processor works is first it performs the fetch operation,

first, it perform the fetch operation, then after fetching the instruction the processor

enters into a phase which is known as the decode phase. So, from fetch, it comes to the

decode phase and after decoding the instruction, it goes into execution of the instruction.

So, this is the execute phase.

So, these are the 3 phases that we have in instruction execution fetch decode and execute.

So, after the executive over; so, processor is done with the current instruction. So, you

should get the next instruction from memory. So, what it does it now goes back to the it

now goes back to the previous next fetch operation to get the instruction from the next

and to get the next instruction and execute it.

So, this way; this fetch decode execute it forms a cycle. So, if we look into any

processor. So, it will have this fetch decode execute cycles ok. So, that the that is the that

they are actually in some sense we can say the that they are pipeline. So, fetch followed

by decode followed by execute. So, in 8085; so, there is no overlapping of these stages,

but if you look into later processors, you will find that there is an overlapping of these

stages when the first instruction is fetched. So, no other instruction can be fetched at that

time after that the first instruction goes to the decode stage and at that time the next

instruction may be fetched.

(Refer Slide Time: 05:07)

Then when the instruction the first instruction goes into the decode stage the first

instruction goes into the decode stage the previously phased instruction. So, so, the when

the first instruction the decode stage the next instruction can be in the fetch stage and

when this first instruction goes to the execute phase; when it goes to the execute phase

the next instruction.

ah Next instruction goes to the decode phase. So, this goes to the decode phase then this

instruction goes to the second instruction goes to the execute phase and in the meantime

the third instruction when the first you say second instruction was in the decode stage.

So, first instruction the third instruction was being fetched, then the third instruction goes

into the decode stage, then it goes to the execute stage.

So, that way there is an overlapping between this fetch decode execute. So, if you look

into say this particular cycle, the first instruction will be executing second instruction is

in decode stage and third instruction is in the fetch stage. So, this is also known as fetch

decode execute pipelining it is common in many of the processors.

Now,; so, this sequence of this fetch decode and execute it continues still all instructions

are done. So, how do you know all instructions are done like any processor it will have

an instruction.

(Refer Slide Time: 06:35)

So, which tells the processor to halt; so, there is an instruction like halt. So, when this

halt instruction is executed then the processor halts it is executed. So, all the signals are

in I can say inactive stage and. So, to take the processor out of this halt stage special

mechanism knows a known as interrupt has to be used and when this interrupt is reset,

then the processor comes back to wake up mode and it will again start executing from

some defined address ok.

So, this is the sequence of operation that happens in the execution of instructions.

(Refer Slide Time: 07:14)

Next we will see how this how this program can be written like binary program that we

have talked about. So, how this can be developed; so, we will introduce that terminology

called machine language. So, we are familiar with many programming languages like say

C, C++, Java, etcetera, but these languages they are for to some extent human

understanding; so, as a human being. So, as a if you read a C program you understand

the meaning of that.

But a machine or a processor does not understand a program in that language see it only

understands the binary 0s and 1s ok. So, when you interpret the program that you have

written in a high level language into a language it is understandable by the machine; so,

this is called a machine language. So, in a in case of a microprocessor the number of bits

that form the word of a microprocessor is fixed for that particular processor. Word means

in one access how many bits it get or when it is doing some operations some arithmetic

logic operation. So, what is the minimum number of bits on which it is operating.

In case of 8085; so, we will say that it is 8 bit processor because it all the operations are 8

bit operations. So, if I say that my word size is say 8 bit; that means, when you get the

first instruction when the processor is in fetch stage, it gets the first instruction and then

the that 8 bit pattern it will depute what is the instruction. So naturally; so, this; so, with

8 bit, I can have at mot to power 8 that is 256 combination. So, these bits will define a

maximum number of combinations that are possible for the machine instructions.

However, in most microprocessors all this not all these combinations are used a 256 is a

very large number, but as far as this simple processors like 8085 is concerned; however,

for complex processors that that number may not be that significant; however, for

complex processors the word size is also large. So, it is 16 bit; so, that way your

instructions of the number of possible combinations is also very high.

So, when the processor fetches a word from the memory. So, its type will determine the

meaning of the state meaning of that word; so, certain pair. So, out of this all

combinations that are possible all combinations are not used and it is up to the designer

of the processor to choose certain pattern and assign themselves specific meaning.

Each of this patterns will form an instruction for the processor. So,. suppose I have got

256 patterns; now as a designer of a processor, I see that my processor will be executing

100 different instructions. So, I will be satisfied with 100 different codes. So, rest of the

codes are do not care for me because the processor will simply ignore those codes; so,

this patterns they will. So, each of these 100 words; so, they are actually one instruction

for the microprocessor. So, this complete set of patterns it will make the machine

language of the microprocessor. So, this is called the machine language. So, the language

it is understood by the machine.

(Refer Slide Time: 10:39)

Let us look into 8085 machine language. So, in as we have said that 8085 is an 8 bit

microprocessor; so, 8 bit microprocessor as I have said that it is the external data bus side

is 8 bit and internally when it is doing the operations. So, all the operations are on 8 bit

data; so, with 8 bit. So, we can have 2 to the power 8 that is 256 different combinations

are possible ok. So, when this processor if this is 8085 and this is your memory then as I

said that if the at the very very beginning, it does a fetch operation and gets 1 byte from

the 1 word that is equal to 8 bit from the memory.

Now, this with is 8 bit I can have 256 different patterns possible, but in case of 8085 out

of this 256 patterns only 246 patterns are used. So, remaining 10 patterns are not used by

the processor. So, it uses a total of 246 different bit patterns to form a instruction set and

these 246 patterns, they represent 74 instructions.

So, 74 types of instructions; so, we will see that within the same instruction they are may

be variants. So, that is why for 74 instructions, we will need 246 different bit patterns.

So, it is very difficult now as a user of the microprocessor systems. So, if I am asked to

write the program in this binary number system the binary pair bit pattern, then it is very

cumbersome ok.

So, normally we can use some hexadecimal instead of binary, for example, if the bit

pattern that I want to have that I have to enter is like this 0 0 1 1 1 1 0 0 which for in case

of 8085 this corresponds to the instruction that implement the number of number in the

register called accumulator. So, this 8085 has got a special register accumulator and this

particular bit pattern to the processor, it we will mean that it asks for incrementing the

accumulator register. So, we will see in detail after for some time.

So, instead of entering the data as 0 0 1 1 1 1 0 0; so, we can break it into hexadecimal

digits and this is 3 and this is C; so, 3 C. So, if we have got a hexadecimal keypad; so, we

can enter this 2 digits very very easily 3 C ok. So, this way it can be done.

(Refer Slide Time: 13:18)

Now, this hexadecimal type of entry so that is also not very much comfortable for the

users because then if the. So, the as so, if you if you look into a program that is written in

this hexadecimal codes then naturally it looks very crafty. So, as a reader of the program,

we it we do not understand the meaning until and unless for each instruction we look into

the corresponding meaning from the manual ok. So, the so, we need to bring some

amount of readability of the program even in this machine language version ok.

So, that gives rise to another level of language which is known as the assembly language.

So, entering instruction in hexadecimal easier than entering in binary combination;

however, it is the it is still difficult to understand what a program written in hexadecimal

does because the as I said that I need to interpret each and every hexadecimal number

that I have entered.

So, what has been done is that different companies they have define a symbolic code for

the instruction.

(Refer Slide Time: 14:30)

So, as I said that previously we have seen this instruction that implement the number of a

number in the register called accumulator. So, instead of writing this big statement it may

be simply implement is implement may be written as say INR. So, it may be simply INR

and this accumulator is A. So, this is INR A; so, by this by these testes, we understand

that it is asking for implementing the register A.

So, if here you see. So, this is; so, it is easier to say instead of hexadecimal number. So,

we can have some symbolic code for the instruction and these codes are called

mnemonics. For example, that INR A the INR part is known as the mnemonic and A is

the operant on which that mnemonic works. So, as a designer of the processor; so, we

can think about different mnemonics that are possible that we will with that we are going

to use and using those mnemonics. So, we can with as a user of the system, we will know

that those mnemonics and right programs using those mnemonics.

A mnemonic for each instruction is usually a group of letters that suggest the operation to

be performed. So, this is a as I said that this is INR. So, it is a combination of in and R

almost all the processors will have some mnemonic called mov mov. So, these are quite

common. So, we will see as we proceed into the assembly language of 8085.

(Refer Slide Time: 16:00)

So, as I said that this 0 0 1 1 1 1 0 0. So, this is 3 C in hexadecimal. So, this hexadecimal

code is called the OPCODE or the operation code. So, this actually tells which operation

has to be done; so, that is why it is called OPCODE. So, this bit pattern or this

hexadecimal code; so, this is called OPCODE and the mnemonic is INR A where INR is

the actual mnemonic part and A is the operand ok. So, A is the short hand for

accumulator. So, instead of INR A; so, it may be some other register also. So, that is the

incrementing the that particular register. So, INR part is the mnemonic and this A is the

operand.

Take another example, suppose we have a bit pattern 1 0 0 0 0 0 0 0. So, this is A 8 0 in

hexadecimal and the if you look into the manual of 8085, you will find that this

particular code corresponds to the mnemonic add B ok. So, the where add is actually the

mnemonic and B is the operand. So, this whole thing is an instruction in the assembly

language. So, what it what it does this is an this is an instruction that tells the 8085

microprocessor that the user wants to add the register B to the accumulator and keep the

result in the accumulator only.

So, this is what the user wants is something like this the accumulator a should get the

content of register b added to its A gets A plus B. So, so, this is the there. So, this why the

assembly language programs they actually help in understanding the meaning of the

machine language program to the users not to the processors.

(Refer Slide Time: 17:40)

So, processor is happy with the machine language code in some binary format, but for

human understanding. So, this is in assembly language. So, it is important to remember

that a machine language and its associated assembly language are completely machine

dependent.

So, if you learn the machine language if you if you learn the assembly language of one

processor it is not going to be same as the assembly language or another processor. So,

because this is done by the processor designers and they do it at their at their own effort

you can say or at their own wish ok. So, it is it is very much unlikely that the two

processors will have exactly one exactly same assembly language that there will

definitely, we some difference as because the assembly language is very close to the

actual hardware. So, since the actual hardware between 2 processors are varying. So, this

assembly language is also going to vary.

So, that is why; so, normally we learn programming in high level language and then use

some tool by which the program is translated onto say machine language or it can also be

translated to assembly language. So, if you look into say any C compiler normally this C

compiler, they do have an option by which it can tail it to keep the assembly version of

the translated program. So, it actually from your high level language program it

generates the assembly language program and from the assembly language program, it

generates the machine code.

So, you can tell the processor we can tell the compiler to keep the assembly language

code available as a separate file. So, so, they; so, as a as a if we are expert in the

assembly language of that processor, then we can look into that code and possibly try to

optimize that code further.

So, if you look into say Motorollas 8 8 bit processor 6800. So, this is also 8085 is from

INTEL and this 6800 is from Motorolla. So, this 8085s assembly language is machine

language is very different from that of 6800 and. So, is the assembly language. So, the

are different. So, program written for 8085 cannot be executed on 6800 or vice versa. So,

that is true.

So, it is so, the target has to be specified like if you are installing any compiler, you must

be knowing that it asks for the target processor for which the code has to be generated.

So, this is because of this reason that the machine language of 2 different processors are

totally different. So, something targeted to one processor will not work with the other

processor.

(Refer Slide Time: 20:33)

Now, as I said that from the assembly language program is for user understanding. So,

machine or the processor does not understand it. So, what we have to do is we need to

translate this assembly language program into machine language program. So, how do

we do it? First we can do an hand assembly. So, we look into the manual of the processor

and then for every instruction that we have in the assembly language. So, we just see;

what is the corresponding instruction we corresponding machine language code.

So, programmer will translate each assembly language instruction into its equivalent

hexadecimal code. And then this hexadecimal code values will be entered by some

keypad and ultimately the when it is entered that software which is getting the data from

the keyboard will finally, store the corresponding binary pattern into the memory.

So, this is the hand assembly process for; so, for simple processors like 8085, it is

possible that we do an hand assembly and get the program get the assembly language

program translated into machine language. So other option is that we have an assembler;

so, assembler is a tool that can translate assembly language program into machine

language program. So, this assembler can be used that will translate the assembly

language code into machine language.

Now, as I was telling; so, if I have got some high level language program say I have got

A C program dot C program. So, it passes through a compiler now this compiler it

generate some assembly language program. So, dot let us say the extension is dot asm

and then this assembly language program it passes through an assembler it passes

through an assembler and it generates the machine code. So, this is the machine code.

So, now if you if you can write directly in the assembly language. So, you do not need

this part. So, you can start straight way at this point and then you can generate the you

can run the assembler and get the machine code. So, normally when we are doing this

translation this C compiler. So, it the it integrates the assembly with it. So, we see this

whole pla whole thing as a as the compilation process see this whole thing as a

compilation process that is why you do not see the assembler code.

However you can you can tell the compiler to keep the assembly file dot asm files for

your view viewing and doing some further optimizations. So, so that is the so, that is

done by the automated tool called assembler.

(Refer Slide Time: 23:43)

Next so, next we will be looking into this 8085 microprocessor architecture. So, this

assemblers are definitely, it is targeted to different processors. So, if you are looking for

8085 will target it to 8085 otherwise you can tell that it is for other processor. So, it will

do it accordingly.

Now, in case of 8085 as I said that it is an 8 bit general purpose microprocessor. So,

general purpose microprocessor means it is it is not doing some special operation, for

example, if you are doing some signal processing tasks. So, there are digital signal

processors that are used for that then for graphics processing we have got some special

graphics processors. So, like that, but 8085 has a processor. So, it is a general purpose

processor. So, general; so, it can do the basic arithmetic operation logic operations like

that. So, it is not specific for a particular application.

It is capable of addressing 64 kilobyte of memory. So, this is. So, total memory space

that it can address is 64 kilowatt; so, with 8085 system. So, m you can connect memory

up to 64 K and if you want to connect it is not that you cannot connect beyond this, but

for that purpose. So, we have to take some extra hardware for the connection, but up to

64 K. So, it can be directly interfaced with 8085.

So, as since 8085 comes as an IC chip. So, it has the chip has got forty pins in it the

power supply requirement is plus five volt. So, the clock frequency it can operate is with

3 megahertz and it is upward compatible. So, upward compatible means that if you have

got some older versions of some processors then this is. So, that that you can just check

up that chip and put this chip into the into the system. So, that is there. So, that is upward

compatibility is maintained.

(Refer Slide Time: 25:44)

So, as far as the 8085 pin diagram is concerned. So, a here it is like this. So, it is a forty

pin chip as I have said. So, pin numbers are 1 to 40 out of that. So, pin numbers one and

two. So, they are called X 1 and X 2. So, this is a frequency generator is connected to

those pins. So, the so, normally what we do is that we connect a crystal between this 1

and 2 and there that crystal frequency will determine the frequency at with this 8085 will

work. So, that the frequency generated is connected to this 1 and 2

Then another important client is VCC. So, this is the power supply plus five volt and

there will be there is a ground line there is a ground line. So, which will be giving as the

ground. So, this VSS this is the ground line.

So, other important pins; if you want to see, then it has got this address bus. So, this is a

8 to a 15. So, this is the higher. So, this is this is a higher order address bus and these pins

a D a D is 0 to 7. So, a D 0 to 7. So, that will constitute the lower order address bus. So,

as I said that 8085 memory space that it can address is 64 K. So, for 64 K, we need 16 bit

bus ok. So, 16 k because 2 power 16 is 64 K. So, 16 bit is obtained like this. So, here I

have got a bits a 15 to A 8 and here I have got pins A 7 to A 0 ok. So, A A A 7 to A 7 is

this one pin number 19 and A 0 is this one pin 12.

And we have got say 8 it is an 8 bit processor. So, whenever it accesses data from outside

world. So, it is in terms of 8 bits. So, that 8 bit data bus is the this D 0 to D 7. So, this is

D 0. So, this is D 7. So, this address the 0 and data 0. So, these 2 pins are same similarly

address 1 and data 1. So, these 2 pins are same; so, this is called; so, we will we will see

that to reduce the number of pin count. So, it has been done like this otherwise what

would have happened is that the 16 bit address line. So, that is 16 pin and 8 bit data line

that is 8 pin. So, 16 plus 8; 24 pins would have already been done just to create this

address and data line. So, we do we will not have much other pins left for other

operations ok.

So, to just; so, the designers they have done some multiplexing of this address and data

buses. So, that the number of pins required is less. Now there are some additional pins

that we will see slowly as you proceed through this course, but some important things

like this is the read bar signal. So, read bar signal. So, this is activated when the

processor wants to read something from the memory.

Similarly, write bar. So, this is activated when the processor wants to write something

onto the memory then there is S 0, S 1. So, this means. So, that gives me the status line.

So, there are actually 3 piece the IO M bar S 1 and S 0. So, they tell what the processor is

doing at present. So, if you just want to know probe the processor and see; what is it

doing. So, this IO M bar S 0 and S 1; so, this will tell you some and this will give you

some indication about what the processor is doing now.

Apart from that; so, there are some interrupt lines INTR and this line TRAP, RST, this

5.5; 6.5; 7.5. So, they are actually some facility by which you can interrupt the normal

operation of the processor and tell it to do something special ok. So, this is that this is for

that interrupt. So, we have got this another important pin that we have is through this

SID and SOD. So, this is serial input data and serial output data. So, if you want to

transfer transmit some bits to serially from this 8085. So, you can do it where this SID

SOD pins ok.

So, as we proceed further, we will be looking into more and more details of this

individual pins. So, like say, we will see we will we will be actually viewing these pins

in terms of functional groups that is the functions that they are doing and we will try to

group them together.

