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So this is the next example that we consider of Finite State Machine. So, in this case we

are considering a lock that has that has got a digital input to unlock it and the input is 1 0

1.

(Refer Slide Time: 00:22)

So, that is there is a single input to this lock. So, conceptually you can think of it as a

lock like this. And, it has got a B input and this B input is serial like. So, if it sees the

sequence 1 0 1, then the lock will be opened. And, once so, every 1 0 1 sequence is

different like say if I press this sequence 1 0 1, then the lock is open.

But, after this lock is opened so, it will go to a lock close mode. And, after that it will

require another explicit 1 0 1 sequence for turning it on or opening the lock. So, we will

see that. So, the state transition diagram that we have is something like this. So, initially

we are at in this the first state, where you see that we can say we have seen a 0. The as

long as we see 0 we stay in this state. So, we will we let us call the call the name of the



state as 0 seen and then when it is in the state 0 seen the output is 0. So, lock is not

opened.

So, as long as we are getting B equal to 0 so, we continue in this state. Now, B equal to

1.  So, this  come it  takes us to a  state which we name as one seen,  that  is  our lock

unlocking pattern is 1 0 1. So, with a consider that we have seen the first one in that

sequence. So, then also the output remains 0 that is the lock is not yet opened. And as

long as B remains equal to 1 so, we continue to be in this state.

So, you see that if the sequence may be like this somebody may be entering values the 1

1 1 1 then 0 1.
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So, as long as these ones are going so, it will remain in this state 1 seen. And, then after

that when this and the output remains 0. Now, if a B if the B input becomes 0 after that

so, it comes to a state which we call 1 0 seen. So, in this 1 0 seen state also the output

remains at 0 the lock is closed and then if we get a 1 then it is 1 0 1 seen.

And, when the 1 0 1 seen then the lock output is 1 that is lock is opened. Then, after if

you if we get a 0 then it goes to 0 seen state that is lock becomes closed and we are we

are in the state as if we have seen a 0 and if B equal to 1. So, this is a new unlocking

sequence that I was talking about. So, B equal to 1. So, it takes as to this state.



So, again you need another explicit 1 0 1 for unlocking the unlocking the lock. So, now

if you press B equal to 1 or B equal to 0 the lock becomes closed. So, lock is; so, we can

say that the as the lock is closed. And then this again another 1 0 1 input sequence is

necessary for unlocking the lock.

So, B is the input signal to the lock and x is the output signal of the lock.

(Refer Slide Time: 03:27)

So, you can say that box that we that I had drawn the lock box. So, B is the input and X

is the output. So, whenever we see 1 0 1 in B the lock is turned open. So, we can say that

the state transition can be like this. They see if we have if we name these states first state

as a 0, the code of the state is or if we make that the code of the state is 0 0 only.

So, this first state it is coded as 0 0, if B equal to 0 the next state is also 0 0 and X

remains equal to 0. If, B equal to 0 and the current state is say 0 1, then the next state

becomes 1 0 ok. So, if we if we are at state 1 so, this is this we code as 1. So, we will

come to this  coding part  later. So,  there are  4 states.  So,  in this  particular  case it  is

assumed that this state is coded as 0 0 this state is named as 0 1 this is 1 0 and this is as 1

1.

So, if the input state bits are 0 0 and the input is also 0 0, the next states are also 0 0. So,

this is the first transition second transition says that if the current state is 0 1 that is this 1

and the input is 0, then it remains in this state only. So, sorry it remains in this state only.



So, it sorry no it goes to the state 2 so, 1 0. So, if H, if this is 0 1 and B is 0, then it is

going to the state 1 0 and the output remains 0. So, that way we can make this full table.

And, once this table has been made so, we can come we can do a simplification and get

the next the combinational logic for doing this thing.
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So, this X is given by H 0 l 0 and this or X H 0 l 0 some H n is given by this function and

L n is given by this function. So, we can just make a combinational logic and we can say

that we can we can put this combinational logic into some part of the circuit. So, this is

the combinational logic. So, it has got B as a 1 input, then H 0 and L 0 as a other 2 inputs

and then we have got these 2 flip flops, which holds the H and L which are L H and L

values. So, this h next and L next so, they come here and they are fed to let us name this

as a H 0 and this as a L 0.

So, this L 0 so, H 0 is fed here and L 0 is fed from this point. And, then this is our X

output. So, in this part so, we realize the function for X equal to, then H n equal to, and L

n equal to this individual functions are realized in this part. So, I am not drawing the

combinational part there, but it can be realized using that.
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Next we will be looking into another example, which is a shift register. So, this is the

standard shift register that we have. So, as you know that with the input of every clock

pulse this input bit gets shifted through this D flip flop chain.

Now, once this input pattern is known. So, you can try to draw the corresponding finite

state machine. Now, we really do not know like what is the initial state of this 3 flip

flops. So, it can be any of the states 0 to 7. So, if we draw so, if we assume that the initial

state is 0 0 0, then if the on the arrival of the next clock with that at that point of time is

in equal to 0. So, it remains in this state, if in equal to 1 it goes to this state 1 0 0.

Similarly, if the if the current state is 1 0 0 and the next input is 0, then it comes to the

state 0 1 0 because this one gets shifted here and the 0 from the input comes to the first

flip flop. So, this way you can complete this total finite state machine which we will so,

from the circuit. So, this is this is the other way. So, from the circuit we can come to the

finite  state machine.  So, here you know other combinational  logic will  be necessary,

because  these  if  you  simplify  this  particular  this  particular  machine  for  the  state

transition function, and output function you will find that it gives rise to the function like

say this is Q 2 Q 2 equal to D 2 equal to Q 1 D 1 D 3 equal to Q 2 like that. So, it will

come in a simple fashion like that.

So,  that  is  why we do not  show the  circuit  separately,  but  this  is  nothing,  but  this

connection.
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Now, how do you design an FSM finite state machine? So, first thing that we have by

this time we know is the description of the finite state machine behavior. So, which is

done in terms of state diagram? So, we can have some specification of a system in some

English  like  language,  and  then  we  convert  that  description  that  English  language

description into a finite state machine. And, that finite state machine has got some inputs

and outputs there will be some symbolic steps and there will be state transitions.

So, we can check whether this  description that the finite state machine that we have

drawn, it really reflects the a finite state machine behavior that was given as a input and

that check can be manual that check can be based on some formal methods. So, which is

beyond the scope of this course, but that verification can be done? Now, once we are

satisfied that  our state  transition diagram whatever  we have drawn, truly reflects  the

behavior that that has been asked for. So, we go to the next step which is a state diagram

to state transition table.

So, you where inputs are the current state and the primary input so, they constitute the

inputs and the outputs are the primary outputs and the next state. Now, once this from

state diagram to state transition table we have drawn. So, next thing is the state encoding.

So, every state is given some binary code ok. So, we naturally we need to decide like if

there are say 4 binary were 4 states. So, if there are say 4 states say symbolically we

represent it as S 0 S 1 S 2 and S 3.



Now, for 4 states I will need 2 bit code to the at least a code of at least 2 bit 2 bit length

to distinguish them. So, somebody may code it like this that the state S 0 will S 0 0 S 1 is

0 1 S 2 is 1 0 or and S 3 is 1 1. Now, there are other choices also like you see that I

somebody may code it like this 1 as 0 1 this is this is 1 1 this is 0 0 and this is 0 1.

So, there is nothing there is no restriction regarding the choice that you make for the

states. Somebody may even do this coding of higher number of bits like in this case so, if

I do a 2 bit coding; so if I do a 2 bit coding then you see so, I can have 4 choices. So, it is

so,  the  total  number  of  alternatives  that  we  have  like  this  is  alternative  1  this  is

alternative 2. So, then the number of alternatives that we have is 2 power 2 factorial of

that, because this is I can just this 4 values.

So, I can arrange in any order. So, any permutation of those the 4 states that is good

enough. So, it can give 4 factorial alternatives. And, if there are say N number of states.

So, N is the number of states then the minimum number of bits. So, minimum number of

bits needed is going to be log N to the base 2 so, these and the ceiling of that.

So, this is the value of N that we are talking about so, this is the so, this is the small n

number of state bits needed. And so, if I do so, so, this is the minimum number. So, there

is no restriction on the upper limit. So, we can go for any number of bits which is more

than  small  n  ok,  but  if  I  choose  this  smaller  n  number  of  bits  then  the  number  of

alternatives that I have is 2 power n factorial. So, you see this is a huge search space that

is  there  and we for  each  of  these  combinations.  So,  it  is  very  much likely  that  the

corresponding circuit that you get will be different.

So, so, basically if we say that my so, this is the finite state machine and we have got

these flip flops ok. So, this is that combinational logic that we have so, that takes the

primary input as in primary inputs and prime it produces the primary outputs, plus it gets

lines from these flip flops the next state bits or the present state bits. It gets the present

state  bits  from here  and  it  produces  the  next  state  bits  sorry  let  me  draw a  clearer

diagram.
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So, this is the combinational logic and we have got the flip flops fine. So, the primary

inputs  are  connected  to  this  combinational  logic.  Similarly,  it  produces  the  primary

output  and  these  flip  flops  content.  So,  they  constitute  the  present  state.  So,  they

constitute the present state and it compute this combinational logic will compute the next

state like this. So, this is a standard technique that we have seen. Now, you see that

depending upon the coding like individual states what code we give this combinational

logic is going to vary.

So, what is the best possible state assignment in terms of maybe the number of gates in

the combinational logic or the power consumption of the combinational logic and these

or maybe some other  factor. So,  that  is  a difficult  problem. So, we there are lots  of

research works that have come up on this particular problem, which is known as the state

encoding problem, which you come back to this later. So, I just I wanted to emphasize on

this point that there are lots of choices in the state encoding process.

The next part is the implementation part, now these flip flops that I have said. So, I did

not explicitly mention which type of flip flop we are using. So, normally while we are

doing the design we use d type of flip flop. So, this is the d type of flip flop D and Q. So,

D is getting this next state bit from the combinational logic and giving the present state

output to the combinational logic.



Now, it is not necessary that we have to use D flip flop only somebody may say I will

use a jk flip flop. So, I will use a J K flip flop, I accordingly 2 lines should come from

the combinational logic to determine the J input and K input for the flip flops. Now, not

just so, that is 1 reason that a why J K is generally not used, because of this reason that

when  you  need  to  compute  this  combinational  logic  that  we  have  so,  they  need  to

compute 2 functions per flip flop, one for the J input one for the K input, whereas if the

flip flop is D, then the next state logic needs to compute only 1 function for a flip flop.

So, as a result it is, it may be easier that we do the realization using D, but that is not

always true it because J K type of flip flop they offer other transition probabilities or the

transition properties. So, that way may be for some finite state machine J K is doing

better or maybe T type of flip flop may be used instead of this d flip flop.

However, in general in whatever designs that we see so, they use D flip flop because of it

is simplicity you can say. And the because of this combinational logic design and the cad

tools that have been designed. So, they specifically target it as a d flip flop. So, that is

why d flip flop has remained as the standard one. Then after this is done so, if after these

flip flops have been chosen. So, we synthesize combinational logic from encoded state

table. So, that way we do the full synthesis. So, this is the full synthesis process. So, we

will take an example and explain like how this is taking place?
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Suppose, we want to implement a counter that counts in this sequence 0 0 0 0 1 0 0 1 1 1

0 1 1 1 0 and after that it comes back to 000. So, the first point is to derive the state

transition table from the stable first a first step is basically the state transition diagram.

So, in this case it is obvious. So, it starts at awaited sorry this diagram is something this

sequence is something wrong I am sorry. So, this sequence is not correct the sequence,

that it is doing is basically if you start at 1 0 0 then it goes to 0 1 0, then it goes to 1 0 1

then 0 1 1 0 1 1 and then 1 1 0 and then it is coming back to 100.

So, that is the sequence that it is doing. So, this is so, derivation of the state transition

function is like this that if the present state is 0 0 0, then the next state is a do not care.

So, the next state for 0 0 0 thus next state is do not care, similarly 0 0 1 also the next state

is do not care. So, what happens if the counter reaches any of these states? So, that is not

an issue with the designer. So, they are that is kept as do not do not care.

If you start at 0 1 0 then the next state should be 1 0 1. So, this way the present state next

state relationship is done. So, do not care conditions that arise from unused state codes.

So, that is basically ignored. So, this way we can do this we can do this state transition

table part for this example.

(Refer Slide Time: 18:19)

Now, after that is done. So, we can synthesize the logic for next state functions and

derive the input equations for flip flops. So, that way you make the truth table from this



you make the truth table, from this graph, from this from this next state table the state

transition table.

So,  you  can  make  the  truth  table  for  C  plus  B  plus  and  A plus.  And,  this  is  the

functionality that we get C plus equal to B B plus equal to A plus B bar C like that and

then we can go for realizing the circuit.

(Refer Slide Time: 18:52)

Sometimes we are looking for some self-starting FSMs. So, self-starting FSMs so, they

have got some startup states so, at power up. So, FSM maybe in an used or invalid state,

where design must guarantee that it eventually enters into a valid state.

So, this is self-starting FSMs design the FSM. So, that all invalid states they eventually

make a transition to the valid state and this way this limits the exploitation of do not care

like say. So, we previously we had say this while we are writing this is 000. So, we took

the next state as do not care, but here that we cannot take so, 000 so, we put it as if you if

you start the machine at 0 0 0 it will come to 0 1 1.

Similarly, if you start at 0 0 1 so, it  will come to the state 0 1 0. So, that way it is

restricted, but it is not arbitrary like in a previous example that we have seen. So, there if

you start at some state which is invalid it is unknown. So, what will be the next state? So,

that is not known, but in this case it is completely specified. So, this self-starting FSM



so, they will always either keep you in this cycle always all one or it will take you to one

of these 5 states ok, after some time.

(Refer Slide Time: 20:15)

And, during by the going by the same mechanism that we have drawn so, you can draw

the as state transition table like say from 0 0 0 it is going to 0 1 1. So, 0 0 0 it is going to

0 1 1. Similarly, 0 0 1 it is going to 0 1 0. So, 0 0 1 it is going to 0 1 0. So, rest from 1 1 1

it remains it is 1 1 do not care. So, from 1 1 1, it it can either remain in 1 1 1 or it can

come to 1 1 0. So, that way it is left to the designer the specification does not tell what

will happen to 1 1 1 clearly.

But, it can go to either it can remain either in this state or it can come to this state. So, if

that is specified then it has to be 1 1 X, but if we truly if we want to follow this diagram

truly then for this 1 1 1 the next state should also be 1 1 1. Anyway so, once we had done

with this state transition table so, we can we can make the corresponding circuit and get

it done.
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Next  we  make  a  so,  look  into  a  comparison  between  Mealy  machine  and  Moore

machine.  So, mealy machines they tend to have fewer states, because the output is a

function  of  state  present  state  and input.  So,  as  a  result  so,  we many of  the  Moore

machine states so, they are copy they are they can be combined in a mealy in a mealy

machine state. Because of the reason that for Moore machine for every even the other

otherwise the 2 states being same only the output being different. So, they are going to

constitute 2 different states.

Whereas for mealy machine. So, they can be clubbed into one state and we can represent

the transitions by means of these inputs also. The input of the inputs primary input they

can also be considered as some constraint on the primary output. Second point is the

mealy  machines  react  faster  to  inputs,  because  of  this  reason that  in  case  of  mealy

machine  what  is  happening  is  that  suppose  this  is  the  current  state  and  there  is  a

transition like this to this state.

So, input slash some say inputs slash some output. So, if in this state if the FSM is in this

state then as soon as this input condition is satisfied. For example, if I say that from this

state it is going to this state and the condition is a equal to 0. And in that case it will

make B equal to 1. So, in if the machine is in this state then whenever a is equal to 0 B

will be made equal to 1. So, that is possible for mealy machine, but because some Moore

machine what is happening is that this output is a part of the state itself.



So, it will be like this say a equal to 0 a equal to 0. So, it will take to this state where it

will make B equal to 1. Now, this transition of state cannot occur until the next clock

pulse arrives, because the next state function that it  will that the combinational logic

computes. So, it is put into this flip flop and this, but this flip flop output will come to

this  point  only  when  this  clock  has  arrived  to  this  flip  otherwise  this  value  is  not

available at the output of the flip flop.

So, as a result even if a equal to 0 till the clock pulse comes thus the machine does not

transit from this state to that state. So, B does not become 1, till the transition has take

place or we can say that till the next clock pulse has arrived. So, there is a delay to the

output depends on arrival of so, this react in some react in some in same cycle do not

need to wait for clock and delay to output depends on arrival of input. Whereas, Moore

machines so, they are generally safer to use because the output will change at the clock

edge.

So, always one cycle later; so it can be a bit safe in our design in mealy machine input a

change can cause output change as soon as logic is done. So, sometimes it is a problem

particularly if  we have got 2 machines  that are interconnected with an asynchronous

feedback.  So,  one  machine  making  a  transition  that  can  affect  another  machines

operation; so if it is a mealy machine type of if it is a Moore machine type of realization

then both these machines will transit at the next clock pulse.

So, they are going to behave in a better fashion compared to a mealy machine where one

of the machine may makes some transition in between, because the change in the input

combination and as a result the output may become that is the interconnection that the

interface may become problematic sometimes this is seen. So, though there is no hard

and fast rule like which one will be used, but in general mealy machine has got less

number of states. So, for a large machine; so, we will go for mealy type of realization.
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So, the state steps for coming back to the steps for implementing a finite state machine.

So, first point is to perform state assignment. So, we can make different assignments that

can give different results, there is a as I said that it is an MP hard problem. So, there is

we cannot solve the problem optimally with a polynomial time algorithm. So, as a result

there is no really good heuristics that exists.

Then  sometimes  we use  some extra  bit  1  bit  or  2  bit  extra  that  for  that  makes  the

combinational logic simpler and the extreme point is with FPGAs where we do one hot

encoding. So, one hot encoding is like this like if I have got say 4 states S 0 S 1 S 2 and S

3, then I can say that for S 0 I have a code like this, 0 0 0 1 S 1 is a code the code is like

this, S 2 is a code like 0 0 sorry 0 1 0 0 and for S 3 the code is 1 0 0 0.

Now, whenever there is a transition from one state to another state in the finite state

machine you see only 2 bits are going to change ok. So, only 2 bits are going to change.

So, that  makes it  interesting.  So, that  the combinational  logic  that  we have.  So, that

becomes much simpler since only 2 bits will be changing. So, this type of coding is

known as a 1 hot encoding the 1 hot means in the state code only 1 bit is 1 and all are the

remaining bits are 0s.

And, this is particularly useful when we have got this flip flop rich architectures like

FPGAs field programmable gate arrays; we will see that later. So, this 1 hot encoding is

very  popular.  So,  we  convert  state  diagram  to  state  table  we  can  do  equivalent



representation or we can do some it is a mechanical process. And, then we can get the

state  table  truth table  for  the next  state  and output  function and then go for a  logic

minimization logical implementation.
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So, if we look into an example like we are looking into your vending machine. So, it

delivers a package of gum after 15 cents have been deposited. There is a single coin slot

for dimes nickels and there is no change no change is given back. So, first stage is first

step is to understand the problem. So, this is my vending state machine FSM there is a



coin sensor that senses nickel and dime and there is a reset that will reset the system and

there is a clock signal.

So, the when appropriate change appropriate some 15 cents or a more has been given,

then this slot opens and 1 gum is released. So, gum release mechanism is given the open

signal. So, that is the specification of the problem.

(Refer Slide Time: 28:01)

So, you can say that we can so, how can we go to 15? Ok. So, there can be 3 nickels 1

nickel 1 dime so, nickel is equivalent to 5 dime is equivalent to 10. So, this one so,

sequence may be a 3 nickels, nickel dime nickel 2 dimes and we do not give the change 2

nickels and 1 dime.

So, that way we do not give the change. So, whenever it becomes just higher than 15 the

gum is released. So, it is you start at state S 0. So, this sequence is in nickel nickel. So,

going to the states S 1 S 2 S 1 S 0 S 1 S 3 and S 7 and in the state S 7 the open signal is

equal to 1 or it may be dime dime going like S 2 S 6 states.

So,  we draw this  diagram after  this  diagram has  been  drawn.  So,  we look  into  the

behavior and get the confidence that this really represents the behavior properly.



(Refer Slide Time: 28:56)

Then we do some state minimization. So, all these states that we have drawn here they

are not required and they can be minimized into this thing. So, on reset it is enters into a

state called 0 cent and then if they even if the nickel is placed given then it goes to 5 cent

state as if it has seen 5 cent.

Another, nickel comes to the state called 10 cent and from 0 cent also if they are if a

dime is given it comes to the 10 cent state. Similarly, for the 5 cent state if a dime is

given it comes to 15 cent and from the 10 cent state if it comes to the state 15 cent. Of

course, so, this is from 10 cent if you put a dime also though it is 20 cent, but we do not

need to remember that as a separate state because no separate action is necessary. So, that

is 15 cent only.

So, after that if we code the states like say the present state is 0 cent. So, 0 cent the then

if the input given is 0 0, then it remains a 0 state that is no input is given and output

remains 0. Then you if a nickel is given it  comes to the state 5 cent and the output

remains 0. So, in this way you can draw the symbolic state table.
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Once you have drawn the symbolic state table the next part is the state encoding. So, this

Q 0 present state. So, this 5 0 cent 5 cent 15 10 cent and 15 cent they are given the code

0 0 0 1 1 0 and 1 1 accordingly, you get this next state function. Once this state of state

encoding has been done so, we have got this truth table.
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So, this truth table you can now minimize using some Karnaugh map for individual D 1

and a D 1 B 0 and open for the 3 for these 3 3 functions you can get. So, this is the

function that is obtained a D 1 equal to Q 1 plus D plus Q 0 N. So, like that you can find

out that this is the function obtained. And, ultimately we can realize it by means of some

combinational logic function like this ok. So, this is the vending machine example.



So,  in  this  way any find  given any finite  state  machine.  So,  you can  start  with  the

behavior come to the corresponding the state transition diagram, then from there the state

table  and  then  count  encode  the  states  using  some  codes.  And  then  come  to  the

combinational logic to be realized and then get the final function realized in terms of

logic gates and flip flops.


