
Digital Circuits
Prof. Santanu Chattopadhyay

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture - 25
Decoders, Multiplexers, PLA (Contd.)

We can look into some chips that realize these multiplexers.

(Refer Slide Time: 00:21)

For example, this 74157 chip: so it has got Quad Two-input multiplexers; that means, it

has got in a in the chip there are 4 multiplexers. So, if this is the full chip, so there are

four multiplexers ok. So, they are all Two-input multiplexers that there are 4 such

multiplexers. And this multiplexers, so they have input a 0 a 0 b so, I 0a I 0b I 0c and I

0d has the 0 inputs and I 1a I 1b. So, in the first multiplexers; so this is multiplexer

numbers 0. So, it has got I 0a and I 1a as input.

The second multiplexer is multiplexer 1. So, it has got I 1a and sorry I 0b and it has got I

0b and I 1b, so that way then other. So there are 4 multiplexer, one is a b c and d. So, any

multiplexer, it has got the so if the multiplexer a, it has got input I 0a and I 1a

multiplexer b, it has got inputs I 0b and I 1b. So, like that and the select lines are same;

so for all of them, so there is one select line only. So, we can just the select line and that

enable lines. So, they are common so, for the all multiplexers.

(Refer Slide Time: 02:00)

So, will see how this is working. So, for that we need to look into the corresponding truth

table. So, this is the symbol that we have. So, there is a select line, there is an enable line.

So, for this multiplexer quad multiplexer to operate, this E line must be equal to 0, then

only this multiplexer will operate. Now, this is the actually the E bar. So, if E bar equal to

high, then irrespective of the value of S the select line. So all this outputs are equal to

low.

However if so, if e bar is low that is then actives enable signal is given to 7 4 1 5 7, then

if the select line is low, then in the Y a output I will get I 0 a, in the Y b output I will get I

0b, Y c it get I 0c and y d I will get I 0d. So, essentially you can say that the structure is

something like this.

So, I have got I have got 4 multiplexers. So, I have got 4 multiplexers connected like this

ok. So, I have got this 4 multiplexers and then the first multiplexer has got I 0a and I 1a I

0a and I 1a, the second multiplexer has got I 0b and I 1b, third multiplexer has got I 0c

and I 1 c and the fourth multiplexer has got I 0d and I 1d and all for all this multiplexer

the select line is same. So, that is coming from S. So, that is a select line. So, that is

same. And this output is called Y a, this output is called Y b, this output is called Y c and

this is called Y d and there is an enable line of course. So, this is the structure, the

logically this is the structure that we have inside the multi inside the chip.

(Refer Slide Time: 04:11)

Now so, E bar input is low. It allow the selected input data to pass through the pass

through to the output and E bar input is high, it will disable the all the multiplexers and

all outputs will be low. When E bar equal to 0 and S equal to 1, the Y outputs will follow

the set of I 1 inputs where y a equal to I 1a y b equal to I 1b etcetera. Similarly when S

equal to 1, it will be following the 0 inputs; so in that case Y a will be I 0 a, Y b will be I

0b like that. So, that is the standard multiplex.

(Refer Slide Time: 04:45)

Now we will be looking into some technique by which we can realize some logic circuit

function using some multiplexers. So, will take has an example 7 4 1 5 1 which is an 8

input multiplexer. So, it is 8, so 8 8 is to 1 multiplexer we can say. So, we normally we

also for the multiplexers, we write it like 8 is to 1 multiplexer that is there are 8 input

lines, 3 select lines and 1 output line.

Now, what we do is that so this is suppose this is the function that we want to realize. So,

this is the combinational function, 3 input combinational functions. So, for the

combination 0 0 1 0 1 1 1 0 1 and 1 1 0, the output should be 1 and for the rest of the

places the output will be 0.

So, what we do first for doing it for realizing the circuit is that we note down the

corresponding decimal value of the different min term ok. So, the first min term is 0,

second is 1, third is 2 like that. Now we note down the places where the value is equal to

1 and accordingly we get the circuit. Like here you see that this function can be realized

like this. So, what this enable line is made low, so that this multiplexer is enabled.

(Refer Slide Time: 06:07)

Now, this A 0 A 1 A 2; so they are connected to the select lines of the multiplexer ok. So,

0 1 and 2 and then if you look into to this place, you see for 1 3 5 and 6. The output is 1

and rest are 0 for 1 3 5 and 6 it is equal to 1. So, for data input 1 3 5 and 6, so they are

tied high and this data input 0 0 then 2 and 4 and 7, so 0 2 4 and 7 for them it is low. So,

it is for 0 2 4 7, they are tied low.

Now, the way it operates is if you apply some value here A 0 A 1 A 2 some pattern here,

depending upon the value one of the inputs lines will one of this data inputs lines will be

selected to the output and if it happens that it selects a line from this 1 3 5 and 6. Then

you will get a high here or 1 here, but if it selects if the values are such that it is selecting

one of this data input 0 to 4 and 7 then you will get a 0 there.

So, this way using this multiplexer, we can realize any combinational logic ok. So, we

can just, what we need to do is sum of the data inputs are to be tied high, some of the

data input are to be tied low. And this combinational function variable, so they should be

tied to the select lines of the function or select lines of the multiplexer and definitely the

enable line has to be activated ok.

(Refer Slide Time: 07:56)

So, how can I do these things? So, this whole operations, which can be summarize like

this. So, these an efficient method for implementing Boolean function of n variables with

a multiplexer that has n minus 1 select input and 1 that is and 2 power n minus 1 data

input. So, it is like this that in this previous example in this example, what has happened

is that I have got 3 input it is a 3 input function ok. So, this is a 3 input function and for

that we needed one 8 is to 1 multiplexer.

So, but if I do that then, what happens is that many times the multiplexer size becomes

too high. For example, in my library or I may not have this 8 is to 1 multiplexers

available, may be only 4 is to 1 multiplexer are available. That means, what I what is

needed is I need to do this thing. The I have got a I have got an n variable function, but I

will I will be realizing using then using multiplexers that has got n minus 1 select lines

that is 2 power n minus 1 data lines.

So, what we do for this is that we the first make the truth table and the first n minus 1

variables of the table, so they are connected to the select inputs of the multiplexer. And

for each combination of select variables evaluate the output has a function of the last

variable. And accordingly we put the variable has 0 1 or the variable or the variable

itself. There is an example.

(Refer Slide Time: 09:34)

So, suppose this is the function that is given to me. So, F x bar y bar z plus x bar y z bar

plus x y z bar plus xyz; so what we do? We have got so this is a 3 variable function. So,

you can straight way realize it using 8 is to 1 multiplexers. So, like this. So, I can do it in

this fashion, using an 8 is to 1 multiplexer. So, this is the select lines. So, I apply x y and

z and this data lines, so these are the data lines 0 1 2 3 4 5 6 and 7 and then I know that

for 1 2 6 and 7, the output should be 1. So, for 1 2 6 and 7, I tie them together to logic

high. So, this is tied to logic high and 0 3 4 and 5, they should be tied to low.

So, what I do? I take these lines and tie them to low. So, this is made 0. So, this way

using, so this is my function this is my F. So, by using this 8 is to 1 multiplexer, so I can

definitely realize it. But how can I do it using 4 in put multiplexer.

So, for doing it with 4 input multiplexer, we have to proceed like this. So, we make the

truth table and then we first of this x and y, so these inputs we apply directly to the select

lines S 0 and S1 and for the third input, I figure out like this. First, so for if I look into

this first two terms, so 0 0. So, whenever this x y equal to 0 0 that forms 1 group, then 0

1 it forms the second group, 1 0 x y equal to 1 0 from the fourth third group and 1 one

from the forth group. So, these are the 4 data inputs like this will correspond to the n put

pattern S 0 x x y equal to 0 0, this will correspond to 0 1, this will correspond to 1 0 and

this will correspond to 1 1.

Now, if I look into the portion of the truth table where it is 0 0, so that portion of the truth

table and if I do a minimization in terms of the third variable, so I will get F equal to z.

So, that way in this line I apply z. Next for this is 0 1 for x y equal to 0 1, so I get here as

z bar ok. So, if you look into this function here, so that is z bar. So, that is I getting as z

bar. Then this part is all 0. So, it is 0 and it is all 1. So, this is again one.

So, I take a 4 is to 1 multiplexer then of course, I need some additional circuitry. So,

what is what is actually needed, we were needing is apart from the multiplexer, I need an

inverter here for getting this z bar ok. For getting this z bar, I am needing another

inverter, but otherwise I can do it like this.

(Refer Slide Time: 13:19)

So, this way you can realize circuits using different number of multiplexers. For

example, if I want to do the same thing using 2 is to 1 multiplexer, then what to do? So,

it is using 4 is to 1 multiplexer. So, if I have to do it using 2 is to 1 multiplexer, then this

2 is to 1 multiplexer, it will have only 1 select line and 2 data lines. So, on this select

line, I apply x and this data lines are 0 and 1. So, I patrician this truth table into two

partitions. So, in one partition x equal to 0 other partition x equal to 1.

Now if I do a minimization, you see that here the function that I am getting is in this part,

if you look into this part, the function that I am getting; so it is 1 when only 1 of y and z

are equal to 1. So, this is nothing, but y XOR z and in the lower part, in the lower part I

am getting the function for this part so, whenever this y is equal to 1, the output is equal

to 1. So, for this part I have got the function y. So, what I can do? I can apply y here and

I can take 1 XOR gate, I can take an XOR gate and take this y and z inputs to the XOR

gate ok. So, I can do it like this. So, this is my F. So, if this is using 2 is to 1 multiplexer.

So in this way, you can have these multiplexers of lesser sizes to realize these

combinational functions. So, if we are having same, if we are there is a n variable

function. And if you have got a 2 power n is to 1 multiplexer, then it is straight forward

as it is reducing, then you can you have to do the grouping of this terms and accordingly

you have to get the truth table. You have to get the multiplexer realized.

(Refer Slide Time: 15:15)

So, next we will see so, two variables x and y have select line. So, this is the thing that

we have discussing; when x y equal to 0, F we can see equal to z. So, we have also seen

the 2 into 2 multiplexers like that.

(Refer Slide Time: 15:30)

So, this is another example where I have got this 4 variable function A bar B bar C bar D

plus A bar B bar C D plus A bar B C bar D and this I want to realize a plus all this. So,

this is the 4 variable function, so I will need a 16 is to 1 multiplexer, If I want to do a

directly. So, if I want to realizing it using 8 is to 1 multiplexer, then we can do it like this.

So, we are applying this A B C to the select lines of the 8 is to 1 multiplexer and then we

are dividing the truth table into regions of similar values of A B C.

So, first part ABC values are 0 0 0 and second part is 0 0 1 like that. And if you look into

the corresponding function F, then for the first part F equal to D, second part also F equal

to D, third part F equal to D dash, then F equal to 0. So, it goes like this. So, I can take

help of a few signals a few lines and inverter to feed the data lines of the multiplexer and

accordingly I can get the 4 input function realize using 8 is to 1 multiplexer or 8 by 1

multiplexer.

So, this way we can use multiplexers to realize logic functions. So, another technique by

which we can realize this multiplexer base circuit is where we do not go for higher

degree multiplexer, but many times we want to realize the circuits using 2 is to 1

multiplexer only. So, if you want to do that say I have got some function F which is a 3

variable function, So, x y and z and this is the function is given by say x y plus x bar z

like this ok.

(Refer Slide Time: 17:14)

Now, if you want to realizing it using 2 in put multiplexer, then we can do it like this. So,

there is there is one decomposition which is known as Shanon Decomposition. So, this

Shanon Decomposition in the most generic form it tells that if I have got an n variable

function x 1, x 2 up to x n then this can decomposed around the variable x i, and the

decomposition is given by x i bar into f. Where, this other variables remains are remain

unchanged only x i is set to be equal to 0 ok, x i is set to be equal to 0 and then plus x i

into f of x 1, x 2 x i equal to 1 x i plus 1 x n; that means, in the function f you put x x i

equal to 0 in 1 case and x I equal to 1 and the other case.

So, if both the cases the function f reduces to a function of n minus 1 variable because 1

variable has been fixed to some constant. So, that variable is done. So, you have got

function of n minus 1 variable. And then we put it has x i bar into f x 1, x 2 up to x n with

x i equal to 0 and then plus x i into this. So, this is known as Shanon Decomposition.

So, if you apply the Shanon Decomposition, so essentially you see what happens is that

if I have got this function F; then if I have got a 2 is to 1 multiplexer, then I can do it like

this. So, this is the this is the input 0 this is the input 1 and here in the select line I apply

the variable x i and when x i equal to 0. So here I have to somehow realize the function.

The first function x 1, x 2 x i equal to 0 up to x n and here I have to realize the function x

1, x 2 x i equal to 1, x n. Then again these function can again the decomposed using

Shanon Decomposition around another variable ok. So, so that way it goes on.

So, let us take an example say this function that we have talking about. So, if we decide

that we will decompose it around single variables say x, then what happens is that f f x y

z it can be written as x bar into f where I put x equal to 0, y, z plus x into f x equal to 1, y,

z. This is on the definition of that Shanon Decomposition.

Now in this function, if I put x equal to 0; so what you get is z. So, it says that it is x bar

into z where z bar is this function and it tells that if you for the second case if you put x

equal to 1 here; so you are getting y. So, this is x into y. So, it tells that you take a

multiplexer 2 is to 1 multiplexer and then if you apply x as the select line, then you will

be getting the so you apply, so this is 0 and this is 1. So, you apply z here and y here. So,

this is the realization of the function using 2 is to 1 multiplexer.

Now, if somebody instead of taking x has the variable around which you decomposed, so

takes a y has the variable around which to decomposed. Then what happens is so, you

gets a function realization has f x y z equal to y bar into f x, y equal to 0, z plus y into f x,

y equal to 1, z. So, that is y bar into if I put y equal to 0 here. So, I will get the function x

bar z and then if I if I put y equal to 1, then this gives me x plus x bar z. So, that is

nothing, but x plus z. So, here I am getting x plus x bar z. So, by Boolean algebra so I

can say it is y into x plus z. So, it says that at the top level you have got this realization, if

you apply y as the control input select input. Then you have got so, here I need to realize

function x bar z and here I need to realize the function x plus z.

So, do the same thing now. On this x bar z, we apply Shanon Decomposition. So, if I

apply Shanon Decomposition, then if I select x has the select line; if I put x has the select

line like this, if I put x has the select line then when x equal to 0, so this is z and when x

equal to 1, so this is 0. So, I can do it like this and for realizing this x plus z again, I can

do it using Shanon Decomposition around x. So, when x equal to 0, so this is z and when

x equal to 1 this is 1. So, this multi 2 is to 1 multiplexer based realization. So, it realize

has the same function as this one, but you see depending upon the variable around which

we decomposed in Shanon Decomposition in case you need single multiplexer, in

another case you are requiring 3 multiplexer. So, that can happen.

So, that way any n input function it can be realized using only 2 input functions and this

whenever I am requiring say some complimented input also so, sometimes so, you can

also you can also do it using this input said inverter also like whenever we are having a 2

is to 1 multiplexer; so, 2 is to 1 multiplexer the function that we have is say x y and this

is the select line s this is the output f. So, f is given by s bar x plus s y s bar s plus s y.

(Refer Slide Time: 24:25)

Now, you can use this structure to realize AND gate, how? So, for AND gate, I want that

if I have got two inputs a and b, it should produce a 1 here. So, you see that if you it

should so, it should give me the function a b. So, you see that if I apply a at S, if I apply a

at s and b at y and if I make this x equal to 0, then this function transform to something

like this. So, s bar that is a bar into 0 plus a into plus a into b. So, a bar into 0 is 0. So,

you are getting a b.

So, this way I can realize 1 AND gate using this multiplexer 2 is to 1 multiplexer. Can I

get an OR gate? So, for getting OR gate, OR function what I need is a b and this f should

be a or b. This, a or b is can also be written as a or a bar b. So, you have seen that these

to expressions are equivalent a plus b and a plus a bar b. So, what we do in this case? So,

if I take this s as a, so if I take a say y equal to 1; so, I have I have got this expression f

equal to s bar x plus s y. Now if try to draw if I put this y to be equal to 1, then this

expression turns out to be s bar x plus s.

Now, if you set this s to be equal to a and this x equal to b, then this is nothing, but a plus

a bar b. So, what I essentially get is that if I have a two input multiplexer, then on the line

x I put b. So, this is 0 and 1 sorry 0 and 1 and this is my s. So, on the 0 line you put b and

this y and the y input. So, if this is 1 this is equal to s, this is equal to a s equal to a.

Now, the function that you get here is f equal to a bar b plus a that is nothing, but a plus

b. So, I can get this OR gate also realized. So, can I get an inverter? So, if I have got this

function so now this s; so, this is 0 and this is 1. Now you see that if I when s is 0, the

output should be 1. So, I make it 1 here and I can take the multiplexer and then the 0

input I connect 1 and 1 input I connect 0. So, accordingly I will get here, output function

f has s bar into 1 plus s into plus s into 0, so that is equal to s bar. So, I am getting the

inverter also. So, I am getting AND gate, OR gate and the inverter.

So, this 2 is to 1 multiplexer. So this is also an universal logic element. So, it can realize

all the logic circuit that we have we can think about ok. So, this is another universal logic

element. Apart from the NAND gate, NOR gate that we have seen this 2 is to 1

multiplexer is also an universal logic element.

