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So, next we will  be looking into Arithmetic Circuits.  So, the circuits  there are many

digital  circuits  that  perform  arithmetic  operation  like  addition,  subtraction,

multiplication, division etcetera and they by themselves form one special class of circuits

ok. So, this is arithmetic circuits are looking into that.
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So, the first example of this arithmetic circuit that we will consider is that of an adder

this is an example of iterative design. So, iterative design means so, you have got a basic

block and that basic block is repeatedly used for getting the more complex designs ok.

So, that way this adder is an example of this iterative design. So, we design a 2-bit adder

and using the 2-bit adder. So, we can expand it to 3 bit, 4 bit, 5 bit like that.

So, we design an 1-bit adder circuit and then expand to n-bit adder circuit. So, this 1-bit

adder; so it has got 2 1-bit inputs and it produces the some of them sum and carry bit and

accordingly and then this 1-bit adder can be expanded to have any arbitrary n-bit adder 



So, we will look into half adder first; so which is a 2-bit adder and inputs are bits to be

added and the outputs are result and possible carry. So, when you are adding 2 1-bit

numbers say; so, if the bits are say 1 and 1 then the sum is 0 and there is a carry of 1. So,

this has to be generated; whereas if it is 1 and 0 then the sum is 1 and the carry there is

no carry; so, carry is 0.

So, we can have this type of situation or say 0 0; sum is 0 and the carry is also 0. So, this

way we have got half adder; so, this is a 2-bit adder and then output and this sum and

carry; so these are the 2 outputs.
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So, on the other hand we have got full adder which includes a carry in also. So, it has got

these 2 bits to be added and it has got a carry input. So, that is this is actually all this 3

bits will be added to produce the sum and the carry. 
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So, the half adder is something like this; so, this is the logic diagram of half adder. So,

this is the; so, truth table is like this. So, as I have said that it has got inputs X and Y and

it has got 2 outputs sum and carry. So, how; so, if 0 and 0 are added these 2 bits are

added then sum equal to 0 and carry is also equal to 0. If it is 0 and 1 sum is equal to 1

and carry is equal to 0, 1 0 sum equal to 1 carry equal to 0; 1 1 sum equal to 0 and carry

is equal to 1.

So, if I look into the corresponding circuit then this sum output it is nothing, but the X

OR function you see whenever X is 0 1 or Y is 1 then only the output is 1 and that is in

the excursive OR fashion. So, this S output is the X OR of X and Y and the carry output

is the AND of X and Y. So, C is equal to 1 when X and Y both the inputs are at 1. So, we

have got the logic diagram of half adder consisting of one X OR gate and one AND gate.

So, S equal to X X OR Y and C equal to XY 
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The other one full adder; so, in case of full adder we have got this inputs like this. We

have got this X Y and Z as input and then when this 0 0 0 0 are added. So, sum is 0 and

carry is 0 when 0 0 1 in that case sum is 1 and carry is 0. So, for 0 1 1 sum is one sum is

0 and carry is 1 and when it is 1 1 1 both sum and carry are 1. So, in this way we have

got the truth table of the full adder.

Now, it has got 3 inputs the full adder has got 3 inputs 2 are the operand bit say X and Y

may be the operand bit and the third is the carry input C in.
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It has got 2 outputs sum and carry and so, for the Karnaugh map for sum is like this. So,

if you if you draw the Karnaugh map then it will be like this that we have got this. So,

this is basically the X OR ok; so, this is the X OR of XY and Z. So, this is basically this a

sum equal to X bar Y bar Z plus X bar YZ plus Z Y bar Z bar plus xyz which is nothing,

but X X OR Y X OR Z. So, the sum is equal to X OR of X Y and Z and in case of half

adder you remember that the sum is equal to X X OR Y.

So; that means, if I use this half adder and we can make a full adder out of that how? We

will see that later.
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But this K map for Karnaugh map K map for the carry output is like this. So, carry

output is 1 whenever this Y and Z equal to 1 then or this X Z equal to 1 XY equal to 1 or

XYZ equal to 1. So, I if I draw the truth table and then make the grouping.

So, it will be like this and so, I can say that is C equal to XY plus XZ plus YZ. So, it can

be written as XY plus Z into X plus Y and this X plus Y can be written in this in this X

OR form also because if X and Y both are equal to 1; then this term actually takes care of

this thing. So, of this C output but if this only one of them is equal to 1, then this Z; Z

being equal to 1; so output should be equal to 1.

So, I can I can this I can change this XY term X plus Y term into this X OR form. And

then it terms out to be XY plus Z into X X OR Y; so, Z and X X OR Y. So, in a half



adder the carry output was XY and in case of full adder; so, you have got this as the carry

output. 
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So, if we consider the full adder function; so, sum equal to X X OR Y X OR Z and carry

equal to C equal to X Y plus Z into X X OR Y. So, and the half adder function was S

equal to X X OR Y and C equal to XY. 

(Refer Slide Time: 06:53)

So, what we can do? We can use 2 half adders to get a full adder. So, here you see that

the in the first half adder we have given X and Y as input. So, we have got XY as the



carry output and X X OR Y as the sum output. So, with that if we put this Z as the

second input. So, second half adder has got this sum as one input and the Z as another

input; so, this X X OR Y X OR Z.

So, that gives me the sum S equal to X X X OR Y X OR Z and this carry is generated so,

this carry part. So, what we have done? We have taken a separate or gate. So, this first

this half adder; first half adder; so it gave XY as output in the carry, but what we need is

XY plus Z into X X OR Y. 

So, this AND gate will be realizing that Z into X OR Y because X X OR Y is coming

here.  So,  it  is  in  the half  adder  form; so,  it  is  connected  to the AND gate.  So,  it  is

connected here and then this Z input is connected. So, here we get Z into X X OR Y; so,

ultimately if I use an OR gate to OR between these 2 outputs. So, you get C equal to X Y

plus Z into X X OR Y. So, that is the full adder logic diagram; so, using this half adder,

so we can realize a full adder. 
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Next, we will be looking into another extension like how can I have more number of bits

in an adder? So, so for wherever we have seen a full adder; so, it can have 2 inputs is A

and B and a carry input and then it is producing the sum output and carry output just in

the previous slide we have seen that a full adder. So, it is having XYZ as the 2 input as Z

may be considered as carry input and it is producing a sum output and a carry output. 



Now, if you have got a number of if you have to if you have got to add a number bits

word size of individual numbers are more say 4 bit numbers; then what we can do we

can connect this full adders in a cascaded fashion ok. So, this C 0 is the carry in coming

from the first adder.

So, it may be if there is no carry for the addition; so, basically I am interested to do this

addition this A 3, A 2, A 1, A 0 this bit pattern I want to add with B 3, B 2, B 1, B 0. So,

and there may be some previous carry coming into the thing; so, that is a C input. And if

this carry is not there then we can set it to 0 or this C C 0 can be set to be equal to 0 if

there is no carry coming from the previous stage; so, carry coming from the input side

So, that way we can; so, what we are doing? For the first full adder; so, we are giving A 0

and B 0 and this C 0. So, it produces the S 0 bit and the carry 1. So, this a 0 plus B 0; so

the C 0 plus sum 0 sum comes here and the carry output goes here. The second full adder

will add the C 1, A 1 and B 1; it will produce S 1 and it will produce another carry C 2

ok. So, C 2, A 2 and B 2; so they will added by the third full adder. So, this will giving S

3 and C 3 and this will be giving me S 4 and C 4.

So, that is what is happening ok. So, we have got two 4 bit numbers they are getting

added and it is producing a 5 bit number consisting of 4 sum bits and 1 carry bit. So, this

way in a straight forward fashion; so, we can connect full adders and get the circuit for

higher number bits. 
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So, C 4 is the chain carry out to the carry in of a full adder of bits A 4 and B 4. So, we

can if we have got next stage A 4 and B 4; so, we can we can chain it to the next stage

and C 0 in this case is part of larger design. So, if it is coming from another such some

such adder then C 0 may be the carry chain output of that adder otherwise we can just set

it to 0.
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So, we can now we can see the hierarchy ok. So, for 4 bit adder; so, we first design the

half adder and use that half adder to design full adder and then use this full adders; it will

get say 4 bit adder. So, that way we can have a clear cut hierarchy in the adder design. 
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On  the  other  hand  subtractor:  if  you  want  to  compute  M  minus  N  and  from  our

knowledge of this number theory. So, we know that we have to add 2’s complement of N

to M. So, we should have this so that is M plus 2 power N minus; so, that is to be done.

Now  if  M  is  greater  or  equal  N.  So,  in  that  case  we  need  only  one  adder  and

complementer of N to do the subtraction. So, if M is greater or equal N then we just; so,

we take the 2’s complement of N and do the addition that will give me the subtraction. 

However, if M is less than N ok; so, then we need to take 2’s complement of adders

output to produce the magnitude of the result. So, if M is less than N then the after doing

the; so, the addition part is same or the sub same as the 2 complement addition part

subtraction part. So, M plus 2 power N minus; so, that is done in both the cases, but for

getting the 2s complemented result. So, we have to do this 2 power N minus this that is

that will give us N minus N ok. 
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So, this is the adder subtracted design A plus B or A minus B. So, either of them can be

done so this. So, here this S is it is the S is a control. So, this S is low for addition and

high for subtraction. So, if S is low; so here I am getting a 0 C 0 is 0. So, it will be

simply doing and this X OR gates. So, they will be having this S input has 0. So, as a

result they will be passing it as 0 the B 0 will be passed here B 1 will be passed here, B 2

will be passed here and B 3 will be passed here. So, this will do the simple addition.

Now, if you are doing subtraction in that case this S will be equal to 1. So, this B 0, B 1,

B 2, B 3 so, they will get complemented via this X OR gate; in X OR gate if one of the

input is tied high we know that it acts as an inverter. So, at this point I will get B 0; bar

here I will get B 1 bar, B 2 bar and B 3 bar.

So, I will get the complemented versions there and then this C 0 is equal to 1. So, this is

the I am getting A A plus complemented 2’s complement of B plus 1. So, that way I sorry

1’s complement of B plus 1; so, that gives us the 2s complement of B and ultimately that

results in A minus B. 

So, this adder subtracted design is very simple; so, on top of this basic adder circuit. So,

we have got a complementer circuit which is consisting of a few X OR gates and that

gives us the solution. Output is a result if A greater or equal B; so we just discard the

carry bit and output is 2’s complement of result, if B is greater than A. So, if you want to

get back the original value then we have to take another 2’s complement at this point.
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Now, over  flow may occur;  so,  what is  an overflow? So, when the result  cannot  be

represented within the number of bits used ok. So, doing some 2 additions and then the I

am doing 2 4 bit number addition the result can go to 5 bits. So, that way they if I am

using  only  4  bits  for  their  realization;  so  there  is  an  overflow. Particularly,  for  2’s

complement  number system when I  am doing the subtraction;  so,  it  can occur  quite

often.

So, there can be 2 cases of overflow for addition of signed numbers 2 large positive

numbers overflow into sign bit.  So, not enough bits for the result or 2 large negative

numbers are being added and same that is a not enough bits for the result. So,; so, as I

said that 4 bit numbers being added it gives 5 bit result and the 5th bit is actually for the

sign. So, if I say that way then that will be effect in the sign bit.
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So, 7 plus 7; so, this is giving me 14. So, if I am. So, in 4 bit; so, if I am representing

both positive and negative numbers we know the range is minus 8 to plus 7. So, the plus

14 cannot be realized you cannot be represented in 4 bit; so that will give us an overflow.
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So, it generates no carry and C 4 may remains equal to 0; on the other hand say you can

consider minus 7 minus 7 that is the result is minus 14. So, here also it is an overflow

because I cannot represent minus 14 in 4 bits, but in this case it generates a carry. So, C 4

equal to 1 if you look into that final carry generated; so, this C 4 will be equal to 1. 
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Now, 4 plus 4; so, here the result is 8 here also I cannot represent 8 in 4 bits because the

range is minus 8 to plus 7. However, it does not generate a carry C 4 equal to 0. 
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And the 7 minus 7; there is no overflow and, but it generates a carry C 4 equal to 1. So, if

you trace through the addition process then you can understand.
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So, this overflow detection is basically if there is an addition at adder subtractor. So, you

have to compare between the carries generated at nth stage and n minus 1th stage. So, if

the if these 2 carry if you if you take an X OR of these 2, then that will be giving us the

overflow bit; so, whether it is overflow or not 

So, the condition for overflow is either C n minus 1 or C n is a high, but not both. So,

that  way it;  it  this  is  the overflow condition.  So,  all  4  4 5 cases that  we have seen

previously, if you if you make a summary of them; then we will see that it comes to some

such conclusion that is a C n minus 1 or C n should be high, but not both; so, that is the

condition for overflow 

So, this 7 plus 7 only C 3 is high; so C 4 is not high. So, that is an overflow minus 7

minus 7. So, C 4 is high, but C 3 is not high; so, that is also an overflow plus 4 plus 4.

So, that is C n minus 1 is high that is C 3 is high so again there is overflow. And 7 minus

7; so, both the carries are generated, but there is no overflow. So, that way this overflow

detections circuit is the X OR of C n and C n minus 1. 



(Refer Slide Time: 18:08)

Now, one difficulty with this type of adder that we have seen is that I have got; I have

cascaded number of full adders. Now the second stage of the adder it cannot work till the

first stage has completed the addition and the carry bit is available from the first stage.

So, that way if we go ahead then for further and further stages; there will be problem in

terms of this carry not yet appear not yet come to the adder stage ok. So, that makes this

addition process or these ripple carry addition process pretty slow ok.
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So, another type of adder which is quite fast is known as carry look ahead adder that we

will see in this. So, this carry propagation is a problem; so, detect the end of propagation

rather than wait for the worst case time to occur. And speed up the propagation while via

look ahead carry select etcetera, and it will limit the carry propagation to a small number

of bits and eliminate carry propagation through the redundant number redundant number

representation. So, these are some of them so we will see them slowly.

(Refer Slide Time: 19:15)

Now, you see that for a particular stage ok; so. So, if I take an example then suppose this

is a particular adder stage ok. So, it has got this xi and yi as the bits to be added and ci is

the carry, ci is the carry. And it produces the sum output and the carry output; now we try

to see when a carry will be generated from this stage. So, the carry will be generated only

when this xi and yi both are equal to 1; so, that is.

So irrespective of whatever be the carry coming from the previous stage; if xi and yi both

are equal to 1; so, this is xi and yi if both are equal to 1 then irrespective of whatever be

the carry coming from the previous stage, so it will generate a carry; this carry will be

generated. So, if I have got a previous stage; so then this carry will be coming to this

stage. So, this carry will be generated from this stage. 

And other condition is other possibility of generating a carry at getting a carry at this

point is there was a carry coming to the previous stage and that propagated through this

stage and when this will propagate? So, this will propagate when only one of this xi and



yi value is equal to 1 because in that case that one will be added. So, the suppose xi equal

to 1 and this carry i equal to 1; so, as a result this sum will be 0 and this carry will be

generated at this stage. So, I can say that whatever carry was coming as input to the stage

that is getting propagated to the next stage.

However, if both of them are equal to 1; so, xi and yi both are equal to 1. So, the sum is

like this; so, anyway this, so this will be the output and anyway this X this xi and yi

being equal to 1; so, carry is already generated. So here, the generation and propagation

does not have any separate meaning, so they are all the same. So, we can say in summary

that this xi and yi. So, they are they will generate a carry if both the bits are equal to 1.

So, x i generate is equal to xi yi and propagate is equal to x i x or y i. So, if only one of

them is equal to 1 then it will propagate.

Now, when a carry will not propagate? So, it will not propagate or it is absorb if ai is xi

bar and yi bar. So, if both xi and yi are 0 then the carry that was coming from previous

stage will get absorb there.
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So, what I mean; what I say is if this x i and yi both are 0. So, if there is a carry coming

from the previous stage then this will be get getting absorbed in it sum and the carry

generated is 0 from this stage so that is the absorbed signal.



So, we can say that there is an absorbed signal a i which is xi NOR of. So, xi bar and yi

bar or the nor of xi and yi and there is a transfer signal which is g i or p i. So, it will be

transferred the; if it is if the carry is generated or carry is propagated. So,; so, this g i plus

p I, so it can be written as a I bar which is x i or xi or yi and C out is 1 given C in equal

to 1 and the carry recurrence is like this.

So, so I can say that ci plus 1 is either the carry is generated at this stage or there was a

carry coming from the previous stage and this stage allowed propagation ok. So, this was

the expression is g i plus c i p i and this expression can be simplified to be written as g i

plus c i t i instead of ci pi. So, I can write is a write it as c i t i also the transfer signal. So,

this way I can say the how the carry recurred carry recurrence occurs. 
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So, I have got this c i is g i plus c i minus 1 into p i minus 1. So, if you just expand it; so,

you will get the c i minus 1 is g i minus 2 plus c i minus 2 p i minus into p i minus 1; so,

it is like this. So, if you go on expanding like this. So ultimately it will be coming to an

expression in this format. So, you can you can get the series sum like this. So, it is g i

minus 1; so c i is equal to g i minus 1 that is the; I minuth oneth oneth stage has generate

a carry or this stage k from 0 to I minus 2.

So, k-th stage generated the carry and the remaining stages; they propagated the carry ok;

so this is the situation. So, this is what we say is that; so, we have got this stages we have

got this stages. So, whenever we are talking about so, this is the i-th stage; so either at



this point I have got the c i. So, either this, so this is the stage i minus 1. So, from i minus

1th stage I have got the carry c i. So, c i is either at i minus 1th stage it was generated; so,

that is given by this g i minus 1.

Or in i minus 2 stage the carry was generated and this stage just propagated it. So, this is

g; so, k equal to k equal to i minus 2. So, it is generated here and it is propagated it is

generated at i minus 2 stage and propagated at i minus 1 stage or it is generated at any

stage in this site. So, it generated at any k-th stage; so some k-th stage some stage k at

which the carry was generated and then it  got propagated through all  this  remaining

stages; so, that is taken care of by this expression.

So, this is telling that it is generated at stage k and the stages k minus. So, k plus 1 to i

minus  1;  they  are  just  propagating  the  carry.  So,  that  way  we  have  got  this  carry

propagated and then other possibility is that initially c 0 was there. So, it was given the

carry was the input carry was 1 and then all the stages 0 to i minus 1 they propagated that

carry. So, these are the 3 alternatives that we can have for the carry generation.
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Now,; so, if you have just looking into the 4 bit carry look ahead adder. So, this c 4 will

be equal to something like this if you expand that expression then c 3 c 2 c 1 c 0 like this.

Now S 0 the sum 0 is given by x 0 x or y 0 x or c 0 which is nothing, but p 0 x or c 0

similarly p S 2 is p 2 X OR c 2 S 1 is p 1 X OR c 1. So, this way this sum and carries of

individual stages can be written.
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Now, we  can  just  optimize  it  a  bit  having  a  requiring  3  less  gates  where  the  C  3

expression this c 4 is g 3 plus c 3 p 3 then c 3 is g 2 plus g 1 p 2 like this. So, we can just

modify this previously written expression optimize it a bit; so, that it will take 3 gets less 
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So, the circuit that we get is a something like this c 0 goes to all the stages then this is g

0. So, this is actually this carry network. So, where this c 1 c 2 c 3 and c 4 they are

generated. So, they are there is a based on this generation generate a propagate logic. So,



this is a coming from this expression; so ok. So, this is straight away implementation of

this expression. 
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Now, so for carry look ahead generation; so, we have got this expression in terms of I, so

i plus c i plus 3 I plus 2 i plus 1; so, we have go this expressions.

(Refer Slide Time: 27:34)

So, in general I will have this type of situation. Now the difficulty is that you see the

number of gates it is increasing significantly. So it is somehow at some point of time I do

not want to generate further carries, ok. So, I want to do some ripple carry and that way I



will make it simple so that so many, so much of gate is gates are not required in the carry

generation process.


