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Classification with Perceptron Model

So, welcome to today’s lecture and as from we will continue with what we have done on

the last class. So, today is a practical lab based session, in which we would be doing

coding exercise. So, if you have followed down the last four lectures which we have

finished off, so the earlier lecture was on actually getting you introduced to a very linear

perceptron model and that is one of the most simplest model of what is called as a neural

network and one of the foundational ones. So, today what we are going to do is basically

code  implementation  of  a  perceptron  to  be  used  as  a  classification  model  using  the

features which we had extracted in the earlier classes.

So, if you remember from the third lecture which was basically a coding exercise,  and

there we had implemented one particular code to extract out features of different kinds

and these included LDPS Gabor wave let us co-occurrence matrices. And summary of

those features which we had extracted from the complete training set as well as on the

test set of c p, and then that was also stored down as a pickle file, which is your local file

used within python in order to store down your recorded matrices.

Now, today what we are going to do is build up on top of that. So, in the last class and I

had concluded on the point where all of those files were saved, and get down for your

offline usage. So, that every time you do not have to reload your images and keep on

calculating. 

So, today I will be taking up from that point onwards where you have all the files which

are saved down, and then appropriately from those I am going to take it forward and

create a new perceptron model, and use these features which were already stored in a

pickle  file  by  loading  it  from  the  pickle  file  and  subsequently  go  down  to  run  a

classification.



(Refer Slide Time: 01:57)

So, the location is still the same. So, you will have to get it down from the GitHub link,

where we have been keeping all our codes posted, and then if you invoke the Ipython

notebook  over  there.  So,  you  would  be  getting  on  your  lecture  5,  which  is  your

classification with perceptron models. So, it is a lecture 5 if dot ip ynb and that is the file

with which we start. 

So, the initial part of the same file is the same header which is over there with an extra

point over there also going to use this extra library called as time. And this is just. So, it

does not have a major impact as such on your training in anywhere, but this plays a role

in order to show you as to that we are accelerating using GPUs and how much time it

takes down in order to get the computation done for f e epoch. 

So, it is just to show you how much of is the time difference over there, now we have

these parts of the header already preserved and all though they are not actually required,

but the reason we preserved it if you would like to have all the earlier computation also

pasted along with the this part of the code which is you want to calculate the features.

And once you have calculated out the features you would go into it, then this header

actually serves as a very generic header to keep down and import all the functions which

you need, all though this particular one on cycads feature that is definitely not something

which is needed. As well as you will know more be requiring direct access to the torch



vision data set because all the required information have been stored down in your pickle

file it is elf. So, these are optional but always a good guide to keep them going on.

(Refer Slide Time: 03:36)

Now, in the last class what we had done was we had trained them and we had stored

them into a different pickle file. So, these file names may be different from varying to

varying, but what you need to keep in mind is that you have one pickle file which is

stored down with your features from the training data. 

There is another pickle file which stores down all the labels from your training data, and

then we need to load basically these two pickle files. So, just remember your location

and the file name which you have created, as such if I am not giving down a very explicit

location this means that all these files reside in the same directory structure where my

base code for running this one is residing.

So, wherever your main code is there it needs to be over there, otherwise if you are from

some other location then you can just append down the extra directory location from

where these files are to be picked up. Now once you have opened it up the next part is to

load this one. So, this is where you just define a file pointer as f, and then you use that

file pointer in order to load your pickle, and you get you are basically your arrays of

training features and train labels. 



Similarly you get your test set features and your test set labels which come down over

here,  and then  like  once this  is  done there is  a  interactive  command to just  display

whether your matrices have been fetched out. So, let us keep on running one by one, so

this is the first model which has to be executed. So, once that is done. So, it works out

you get your first instance which has been executed over there.

Now, we go from the comment on to the next one which is about loading. So, it shows

that the feature matrices which were saved on the disk they have been loaded good. So,

we can go down to the next one which is to define my network architecture ok.

(Refer Slide Time: 05:22)

So,  within my network architecture  how it  goes down is  if  you remember  from our

simple neural network. So, what we had was you have a set of inputs, and you are just

connecting it to an output which is your classification.

Now, for classification over here we are doing a ten class classification. So, it means that

there are 10 neurons on which the output will be coming down, and these are a one hot

neuron kind of a thing. So, what that technically means is that whichever class is present

that particular neuron will be one everything else is going to have a 0 value over there

ideally, that is what is present on my training data set whenever you are predicting you

will get one of the neurons, which will have a very high value which is close to one all

the other neurons are going to have a value which is more or less closer to 0.



And that is how we are going to define over there.  So,  the first  part  is to define an

initialization part, so first we will start by defining a class. So, this class definition is

basically trying to define your container within python of saying, that this is a particular

1 which I am using, so what I am going to do is that in order to define my perceptron, I

define a class which is called as perceptron and that has a data structure of the type called

as a n n dot module. 

And these n n dot module is a native structure which has been called on from your torch

library. So, we are using the torch in order to implement our pytorch environment over

here and within thoughts we are going to import down my n n library. So, within n n I

have a particular data type which is defined as n n dot module. Now that I need to start

my initialization and this initialization is trying to say down that what is the number of

inputs which goes down into my neural network over here.

That is the on the input side of it, and that is equal to my number of channels which I call

over here as an underscore channels. So, this is exactly if you look over here, so this n

underscore channels it is supposed to be equal to the length of the vector. The next part is

that you need to identify what goes sort of like within the perceptron model over here,

which is the starting point of my pointer on the constructor, and which is my end point of

the constructor. 

So, the starting point of the constructor is what gets defined by this command of super or

which is just a superior constructor over there, so over here the first part is that I will be

defining my perceptron which has this,  and then my next part  over there is  that the

perceptron is linked with it is elf and this has to start it is own initialization and how it

would be starting it is own initialization is what is defined over here, and this keeps on

giving the point that my input to it is basically a linear combination which means that all

the neurons which I have on my input side of it they will be densely connected to all the

neurons which I have on my output side. And how this is connected is that I have n

number of channels in my input set which equals to the length of the feature vector, and

they connect down to all the ten neurons on my output side over there.

Now  typically  for  this  initial  part  there  would  not  be  much  of  a  modification

subsequently when you keep on defining your network, you will have to define this part

of your input output relationship as you keep on adding subsequent more layers. So,



these we will be taking down into the multi-layer perceptron examples, which we take

next week up while doing the theory and then subsequently to the lab. 

So, here for our simple perceptron model well you have a set of inputs which are just

connected  down to  1 what  10 cross  1 output  vector. So,  this  is  what  initializes  and

defines my perceptron model.

The next part is that I need to define, what is my forward pass over this model or forward

pass means, that if I am giving an input I get an output. So, what is the relationship

between this inputs to my output, now you remember from our perceptron model over

there, so my input output relationship is that all connect switch come down from my

input side over there had to be connected down everything to my output. And once I have

this feed forward going down the next part  is that  there will  be a summation which

happens over there.

So, all the j number of neurons from my input, they will be connecting down to each of

these k neurons on my output over there.  Now once this summation is achieved you

always have a bias vector which is also a trainable parameter within the library it is self,

then the next part is that I need to have another non-linearity. 

So, this non-linearity is what gets added over here. So, what this means over here is that

whatever  comes  down  as  my  input  that  gets  a  linear  transformation,  so  this  linear

transformation is what is already defined over here, after this linear transformation has

been there then I take this same output over here feed it as input to this network, and then

I apply a soft max criteria over there.

Now, as I have this soft max non-linearity over there whatever comes as my output that

is what I returned from this function, so whenever I do a call for this particular function

name called as perceptron, whatever I give as input it will have a linear transformation,

then a non-linearity of soft max imposed on top of it and gives me my final output from

there. So, this is how I define my perceptron model. So, let us run that part so, I have my

function defined over here for my neural network. So, my neural network is not just a

function and that is what how we were treating it down throughout.
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Now, from there the next part which we would like to do is actually generate a data set

labels  are  accordingly.  So,  here  if  you  remember,  so  I  was  telling  that  in  this

classification problem you just have a one hot vector remaining in your representation.

So, in that one hot vector what comes out is that as whichever class is present over that

that particular element is going to be one everything else is going to be 0, but then in the

labels which we had stored. So, they had just numbers from 1 2 3 4 5 6 7 8 9 10. So, it is

it is not exactly 10 cross 1 vector of which 1 is 0. So, that is what is done over here by

running down another simple for loop.

So, what it would do is that it would define an array of size of 50000 and 10 columns.

So, 50000 is the number of elements in your training sample, and 10 is the number of

output classes, which can be present over there. And now based on whichever is the class

indicated in your train label over there so this part, if that matches down to a particular

column index on a given row, then you are just going to set that as one and everything

else is otherwise going to remain as zero based on this initialization given down over

there.
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So, we can just run that part and this generates your one hot label vectors, now once that

is done. The next part is that you can actually create a pytorch data set from your feature

matrix, and know where this comes down from the fact is that your earlier data structures

and whatever videos you are using. 

So, they were all in numpy format and numpy is a library which so, all numpy format

libraries are used within numpy constructor it is self. So, whenever you are dealing with

torch as another library it has it is own data type definitions to go there. So, you need

some sort  of a wrapper in order to wrap anything any variable which is given as an

umpire  constructor  on to our  torch equivalent  constructor, and for  that  the functions

which are needed are something which is called as a torch from numpy. 

So, what this effectively does is that given any array in numpy you are going to convert it

into and torch equivalent 1. And then pack it down into a tensor data set it is self. So,

these are all touch tensors which get created. So, we need to create that for the training

and testing for both of them.

So, just running this one creates it for the training and testing, and then after that for a for

the sake of the library and how it works out is that you also have something called as a

data loader. So, this data loaders main efficiency is that when you are trying to load data

on to say a GPU device over there. So, you have a lot of memory transfers going down

between your ram to the GPU. 



If  you  remember  from your  other  related  classes  on  computer  organization  so,  you

remember  that  these those happen down in fetch cycles over there,  Now these fetch

cycles would typically be when I fetch down some part of my memory from my ram on

to from my CPU ram or system ram onto my GPU ram, and then in the GPU the rest of

the code keeps on working. Now while this code keeps on running in the GPU my CPU

is not doing anything, and I am not even making use of the CPU ram. 

So, I can now pre fetch the next set of data which will be needed for operating on the

GPU in this duration and that will actually pipeline and speed up my whole operation,

instead of having to wait for the GPU operation to get over, and then write it back to the

ram and then fetch the next one.

So, this data loader is basically and as is a wise function which has been provided within

the library, which can fetched on 64 such units of samples from your CPU ram onto the

GPU ram, at any given point of time and. In fact, this does also work down within while

you are even trying to fetch down from your hard drive onto your ram as well. So, we

will be covering that in to as we go into much more detail classes as well. So, as of now

this  data  loader  is  now  made  down  to  optimize,  and  then  fetch  down  it  pre  fetch

everything before it keeps on working.

(Refer Slide Time: 14:43)

Now, the next part which we are going to look at is actually check down whether GPU is

available on the system. In case a GPU is not available, then we do not use a GPU, so the



typecasting and everything nothing is going to get done. So, you are GPU in order for it

to work on the data. So, the data has to reside on the ram present, in the GPU you cannot

directly operate on the ram which is present on the CPU there are on two different data

buses over there. So, you will fetch and that fetch happens through your data loader, once

you have  fetched over  there  then  within  your  GPU memory itself  you can  keep on

operating everything.

So, if this is not that then, but the point is whenever you are fetching and putting it on the

GPU it means that there is another kind of a typecasting which goes on. So, if the device

is not found then we will not be doing that typecasting, because the rest of the codes on

CPU they cannot make use of the GPU type cluster it is self. So, here my typecasting

gets over, and then I start by defining the function for training the network.
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So, once you had your network defined the next  part  is  that  you need to define the

trainer. So, this trainer is basically a part where you are defining your forward paths

which means that given an x you get an output y. Now what you are getting down was a

y hat which was a predicted part of y, you have your original y which is the ground truth

available.

Now, based on that you are going to calculate a difference between them which is your

cost function, we had used the MSE or l 2 norm as a cost function over there in order to

find out our j w, which was the cost associated with the weights. So, this part of the



algebra which gets transformed on to a code is what comes down within your training

routine. So, as a simple part what we define is a training model function over here. So,

the input to this one is a pointer which is the model or the neural network given down

over there.

Next is the criteria which is basically the cost function which I am going to use that is

also referred to within these libraries as criterion function the number of epochs over

which it is going to learn. So, number of epochs basically is the number of iterations over

which I would do. So, remember from my last theory class explanation that you start

with some arbitrary value, you put your input data you get some predicted output y hat,

you take a difference between them. So, that is your cost.

Now, based on that  cost  you  will  be  taking  a  derivative  of  the  cost  and  then  back

propagating it over the weights back. Now once you have done this one this is over the

first epoch, then with these revised weights you are again going to put down your input x

over there, and get down another predicted value y hat, get down a new value of j w

which is at the end of the second epoch, and then again back propagate and this keeps on

going. So, that is what is called as epoch these iteration counter over there.

The next part is learning it which is your eta factor which comes down into your weight

update rule. So, your w nu was piece w of n plus 1 was equal to w of n minus eta times

Del w of j w. So, this eta factor over there was my learning rate which was helping me

scale down and put down this gradient in the order of the magnitude of the weights it is

self. So, that they can all scaled on in a similar way and there are no erratic variations.

So, what we start initially is we put down a pointer which is called as a starting time

point.

Then. So, this is just to show you how much long it takes to traverse down per epoch

then, we create a few lists so one of them is for the training loss, one is for training

accuracy,  another  is  just  for  accumulating  out  temporary  labels  or  whatever  is  the

prediction which comes down at the end of epoch. Now we start down by running a

counter which runs over the number of epochs over here. So, epoch is my loop counter

variable over here, and then this exists in the range of one to the number of epochs ok.

So, it is basically equal to the counter goes up to the total number of epochs which is

present over there. So, let us define a small timer variable over here which is my epochs



start time. Now this is just a small printer for printing down like how many epochs out of

how many epochs have elapsed out as of now.
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And then running loss is a basically the criterion of the cost function evaluated within

that  particular  epoch,  and that  is  0  down at  the  start  of  every  epoch,  and keeps  on

accumulating as we keep on going across the epoch. Now, the point is that we will start

with loading data. So, my initial data loader will go down into a back size of 0 or the

minimum path size which it takes. 

So, then what this definitely means is that I will load, so I will basically traverse 1 data

point at a time and go through it. So, within my data over here which exists in my train

loader. So, here what we are basically defining is that another loop one which we are

looking at the total number of data points existing. So, if I have 50000 once, so within

each epoch for every single sample I am going to do a feed forward, then find it is error

and then I will be back propagating it over there. So, this is per sample based over there.

So, going from there you remember that we had done this flag of use GPU. So, if this is

set to true; that means, that the GPU exists, and whenever there is a GPU existing we

need to typecast  the variable  and set  it  as cuda.  So, if  the GPU does not exist  then

anyways it comes down as else over here, and then I do not need to typecast any of these.

Now the way of converting and writing inputs as variable inputs is of the fact that this

particular library of pytorch is based a dynamic graph build up constructor, and there



they have a separate data type which is called as a variable and if you are not defining

certain thing as an explicit variable within the library. 

So, they will be taken as constants across and there will be no modifications over there.

So, we in order so that these can be used within your update rules, we are putting them

into another type caster which is called as variable and this is pretty much intrinsic to the

library it is self, that there is no algebraic restriction as to why you need to do that this is

from reasoning left best left down to the library builders it is self.

Now, from there the first thing which you need to do is you remember that we had a Del

Del w of jw to be calculated, and this value has to be set down initially to 0, and that is

what we do with the zero grad factor over there. Now once that is done I will get my set

of output. So, this set of outputs is basically if model is which is my function, which is

that neural net for which I had created, so whatever is my input I put down to that model

I get a set of outputs, and that output is what is the output of the network which I get.

(Refer Slide Time: 21:34)

Now, once I have this output of the network coming down over there, then what I would

like  to  find out  is  basically  that  which  particular  class  over  there  has  the maximum

probability  of  occurring.  So,  once  I  get  that  whichever  of  class  has  the  maximum

probability  of occurring.  So, I  will  be just  be putting that particular  class as a 1 hot

everything else is going to subside down towards you now once that is placed down into

my prediction.



So,  these  are  basically  predictions  of  whichever  is  the  maximum probability  of  that

coming down. Next I defined on my criteria function as the so, this is my loss and that

loss is defined in terms of my criteria function. Now here the input to my loss function or

my jw is basically y hat and y. So, y hat is my predicted output which is given over here,

and y is the exact ground truth label which is supposed to be present and that is my labels

over here. 

Now once that is done I can start accumulating my losses within every single epoch. So,

in any epoch it well take all the samples and then keep on calculating losses for each

sample, and then we will add down losses for each sample together it is self. So, and that

would give me the total  loss at  the end of passing down all  the samples through an

epoch. Now once I have that part done, then I can actually find out what is my total loss

in that complete epoch and that is what is found out over here.

(Refer Slide Time: 23:00)

So, I take my running loss and from there I get my so, basically I get my running loss

over here, and I have the loss given down from one particular data, and then when I start

my back propagating over there first is find out by what is my total loss or the total error

which occurs over there, and then I can divide it with the batch size which is equal to

basically the total  number of samples which were given down in one particularly for

batching concepts you will come down a bit later on.



It may so, happen that you might not need to push down all the 50000 data points into

one single epoch in one single shot and calculate for each of them, but you can push it

down into say 100 samples out of this 50000 go in together, their error is calculated and

that is back propagated. And next you have another 100. So, it would mean that there can

be  multiple  back  propagation  within  the  same  epoch  as  well  whereas;  here  we  are

looking into one single back propagation which can happen.

(Refer Slide Time: 23:58)

Now, whenever we write down this total loss dot backward that is the derivative of my

loss  function  which  is  calculated.  So,  my  Del  Del  w  of  jw  in  order  for  this  to  be

calculated, I need a like basically j first derivative of my cost function if you remember

so, that first derivative of my cost function is what is also called as a backward operator

over here. Now once that is done the next part is that I need to get down my network

parameters and keep on updating my network parameters as well.

So, in my network parameters I write down another loop over here which will basically

be counting down all my model parameters. So, model parameters is a function which

gives me all the free power in a model or basically all the weights which are present

within my neural network which can be updated. So, within your neural network the only

thing which can be updated are basically the weights, you cannot update anything related

to which is this non-linearity present over there in any way.



So, since you do not have any updation on to be done with the non-linearity, so the only

trainable parameter left down for you is just the weights. Now what we need to get is

once you get down pointers to each of these weights coming down, next is you need to

find out what is your too so we have calculated our training loss and everything going

down over there this is just a small script to print that at any given point of time.
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The next is that you will have to basically update each of them. So, for updating you will

be running down through the rest of it,  and then as you keep on going so, what we

definitely find out over here is that there is so you have your feed forward happening

down,  and  then  you  get  your  error  calculated  from there  you  will  be  getting  your

gradients calculated, you have the gradient for the loss function you have your gradient

for the network everything done. 

With  these  you can  now update  all  of  your  weights  which  goes  within  your  update

routine over there. Once the update is over the next part which remains for us is just to

keep on looking into the errors. So, initially we will start with a very naive approach of

just trying to look into the errors and see whether the error is coming down and maybe

just plot it down.
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But  as  we keep on going I  will  be  coming  toward  to  a  point  for  very deep deeper

networks well you take on for a longer duration of time. As to what our strategies and

then how do you come down with some way where just by looking into errors you can

come down to a point where, you can just converge and stop and not take them any

further.

So, let us just run it down. So, what I have done is so, this is the function which gets

defined and once that is done we need to start with the training.
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Now, in the training part over there. So, this is your train model function which we had

defined over here so, now that the whole complex procedure is now just a function call

for  me.  So,  over  here  I  need  to  put  down  my  model  which  comes  down  from  a

perceptron which is defined over here, that exists on my cuda because I have a GPU

running with me, then I have my criterion which is defined over here which is my mse

loss or rho mean square error loss, the number of epochs I am using this is for 20 epochs

and the learning rate over here is kept at 10.

And so, this has been empirically optimized you can definitely play around with on 100

or 10 power minus 3 and just check around you will find like real fun around over there.

So, just let us run this part.

(Refer Slide Time: 27:40)

So, you can see these epochs going down, so 0 out of 19 which means the 0th epoch

which has run down. So, this barely takes down about a second, and if you look into

these errors over there, somewhere around this point is where the error is changing. So, it

is changing at a much slower rate really slow and tardy rate.

But you see you can clearly see that these errors do keep on changing, and so, going at

the rate of 1 second it is it is somewhere around 20 second that.
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So, the total thing takes maximum of 27 seconds in which and this is how the rate is

going down.
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Now, clearly going down by this I do know that this will keep on continuing further and

go down. So, please keep on putting your errors as towards a large number of epochs.
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Now, this is the other side of it where we are looking into the accuracy plot, and if you

clearly see as the error is decreasing your accuracy is definitely increasing over there, but

then this  accuracy is not that  high.  So, it  is just  a really  it  will  0.5 percent on your

accuracy side over there.
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So, once that is done that is on your training part of it the next part is to look down into

your accuracy over your test set unfortunately with all though it had our 12.5 percent

accuracy on the training set on the test set it just unfortunately came down as 0.
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So, if you keep on running this for a longer time. So, we Know that from our experiences

if we were training this for say about 200 epochs or so, you do come to a point where

you can have about 10 12 percent of accuracy very easily coming down. So, I will leave

these exercises more off to you to explore, and have fun along with that and we then next

week  we  will  be  continuing  with  multi-layer  perceptron,  and  having  much  more

exercises in to understanding multi-layer perceptron, as well so with that stay tuned. 

Thanks. 


