
Deep Learning for Visual Computing
Prof. Debdoot Sheet

Department of Electrical Engineering
Indian Institute of Technology, Kharagpur

Lecture – 45
Transfer Learning a ResNet

(Refer Slide Time: 00:20)

Welcome. So, in the last lecture which we had covered down it was more often

understanding transfer learning and for domain adaptation purposes and that is where we

were doing it with one of these first versions of a very deep network which was called as

GoogLENet. Now, in this particular lecture, we are going to do it on a residual network

which is the successor for let us let us say in someone says the successor and the

subsequent model which comes down on the image net challenge after that.

Now, you had look into different aspects over there, one was that GoogLENet is

something which in order to have done real deeper networks over there which can work

down in order to get trained. So, one major aspect within a GoogLENet was you needed

to have an auxiliary arm for doing an auxiliary (Refer Time: 00:59).

So, whatever you are modifying, you also had to modify in the auxiliary arm and then

whether you are going to update down only the final layers or everything end to end that

was actually something which was influencing the total performance. And what we had

seen is that over there in fact, like not being able to update everything and just trying to

update only the terminal nodes was producing a lesser accuracy at the end of five epochs

as compared to the one where I was trying to train it from scratch which is take a

completely untrained network with randomly initialized widths and I am trying to train it

out.

So, now obviously, there was almost a 20 percent of accuracy difference if you compare

down taking your pre trained model versus our non pre trained model. Or even a pre

trained model where you are doing whole end-to-end update versus taking a model

where you are not doing an end-to-end update.

So, based on that let us look into what we have today. So, on the residual network what

we are going to do is something like this. So, the initial part is just my header which is

quite similar to what we have been taking down for all of our other earlier exercises has

but not much of a difference which comes down.

(Refer Slide Time: 02:08)

Next I get into my data. Now, for residual networks as we had seen in the earlier case, we

are just taking down to two two four cross two two four sized images. Whereas, in

GoogLENet you had take a; you have to take down 299 plus 299 sized images. And also

in the earlier experiment where we were just trying to get you updated on what your

residual network is you did not find out that the total number of parameters is low. And

based on our computer complexity calculations you could figure out that the operational

space is also lesser for a residual network as compared to a GoogLENet.

So, this is what I had left out as open-ended problems which you could solve out on your

space. And based on this operational space complexity, you always get to decide what

will be your batch size, because finally the idea is that your operational space four batch

should be something which fits into the GPU memory or CPU memory whatever you are

going to use over there. So, over here for residual networks, typically your back size was

more than the batch size which we could take down for GoogLENet and we are sticking

down to a batch size of 32 which fits perfectly for running down even three different

configurations.

So, here also we have the same kind of a logic as we had used in a GoogLENet, where

we had three different networks. So, the first network is which was just download it and

it was without any of the trained weights over there. So, everything was randomly

initialized bits.

The second network and the third network was what was taken down from a image net

pre trained model and then based on this pre trained model we had just updated the

weights over there. In the second network net two is where we did an end-to-end update

which is over all the layers and weights over there. In net three is where we had done an

update only for the last layer over there; we did not update anything in the previous

layers in anywhere.

Now, we start from there and then get down onto say our understanding of the data set.

So, what we do is we create our data set loaders over there, the train and test loader, and

then they are pretty decently created.

(Refer Slide Time: 04:14)

Now, once that is done let us look into the size of the data, now, now, this is also pretty

standard. The reason why we put it down every time is just in order to check that the

correct size of the data set has been loaded. So, you have the correct data set and

everything available over there, but say in case they have how was a collapsing or within

this particular session when it was loading, it could not load it down perfectly, then it

creates a messy issue with you. So, this is just a sort of a debugging and safe side state

which we typically put down for all of our exercises as you have seen till now.

(Refer Slide Time: 04:47)

Now, comes down to our model part of it. So, that first network which is just the network

architecture taken down from our taught fusion models. The second net is where it is

taken down as a pre trained model. So, this one pre trained equal to true is what

downloads the image net pre trained model for us, so the weights are also downloaded.

So, if you are downloading it on the real time value you are running these exercises and

watching this video.

Then you would see that, it consumes a lot of space on your it does consume a lot of

your bandwidth; and then the total space also consumed on the hard drive is also large.

Now, one of the reasons why it would be consuming more bandwidth is, because it needs

to download the weights, and the size of the parameter space. In terms of the space

complexity in bytes of the parameter space is what we had already discussed in the

earlier lecture.

So, from there you can actually do a pen paper calculation based on your total number of

parameters and multiply it with the precision and find out the total size of the file, so that

that is easy and straight for you.

The next network over here is net three. And net three is also a pre trained model. So, the

only thing which we do in net three is we change the terminal load and just update the

terminal node so anyways we will have to download the whole model as such. Now, this

is where we print only the first model over there to look down whether the model is

correct or not. So, this was the if you even if you print down the next two models net 2

and net 3 they will come down as the same. So, it is just the same model as far as

architecture definition goes down over there.

(Refer Slide Time: 06:16)

Now, the next part is to count down the total number of parameters and whether we

counted down from network 1 or network 2 or network 3 it makes the same sense they

did. There would not be much of a change and this comes down to about 11 million

parameters, so that is roughly say 2.5 times lesser than your GoogLENet the number of

parameters within GoogLENet over there ok. Now, we go on to our modifications.

(Refer Slide Time: 06:41)

So, the modification which we need to do over here is instead of a 1,000 class

classification problem, this is now becomes a 10 class classification problem. So, for

each of these networks we are just going to change the final node which was 512 nodes

to 1,000 nodes instead of that, we make it 512 nodes to 10 nodes. And then there is the

only changes which comes down in net 1, net 2, and net 3 the f c layer is where the

change comes down ok. Now, having done that next what we do is we just copy down all

the weights and keep it for our use.

(Refer Slide Time: 07:11)

And then we check out if a GPU is available then the models are converted onto cuda.

Now, till this part it is straightforward what we have done in the earlier cases.

(Refer Slide Time: 07:23)

Now, coming down to our loss functions we still stick down to negative log likelihood

loss which is one of the losses which you are doing for any of our classification

problems. For optimizers is where the change comes in. So, in case of net 1, we need all

the parameters to be taken down and the optimizer which we have is Adam.

In net 2 also, we are going to take down all the parameters. So, net 1 is where you had

judge the model and they were randomly initialized bits over there. So, all the parameters

will be updated end to end. Net 2 is where you had the model downloaded and the

weights where something which belong to the image net pre trained model and still

although you have updated only the last layer, but you will be updating weights

everywhere over there.

And net three is where you have your image net pre trained model, you have replaced

only the last layer from 512 to 10 neurons that is so only replacement you have done.

And you would like to update only the last layer over there. So, if you get back onto the

code then you can see that the parameters which you are taking down and just fc

parameters over the net three dot fc so that is the only parameter which we take down for

net three. And this is by the same logic as we had done in case of GoogLENet as far.

(Refer Slide Time: 08:36)

Now, going down to train this network since the total number of floating point operations

which you do for a residual network is much lesser than the number of floating point

operations which you do for the GoogLENet. And for that reason it takes much lesser

time actually do train it out.

So, what we do over here is we train it down for 10 epochs in order to look down at a

long term performance. What comes down? So in the GoogLENet case we had just

trained it down with 5 epochs and here we are just going to train it down with 10 epochs

to look into the change over there. Now, we just have these buffers created down and

then we keep on running over the epoch pointers over here.

(Refer Slide Time: 09:09)

Now, the first thing which you do is within an epoch which is going to load down one

batch of the data. And if you see that there is a GPU available with you then you convert

it onto cuda which is your typecasting or in terms of a hardware or computer

organization is perspective this was a DMA transfer which you were initiating. And this

DMA transfer is what transfers all of these inputs which were otherwise deciding only on

the CPU RAM onto your GPU RAM. And if the model is present on the GPU RAM the

data is present on the GPU RAM then only you will be able to make use of the GPUs

processing capabilities in order to solve it out.

(Refer Slide Time: 09:52)

So, that goes down with the variables over there. Next, what I need to do is I will have to

run down my inputs through my network. And this is just network one and get down my

outputs. Now, for once I have this one I just find out what is my predictions coming

down. Now, keep in mind one thing that we do not have an auxiliary classification node

in anyway present within this particular network. This is a just as plain simple residual

network. So, you just have the end part over there and that is why you are not

aggregating or finding out auxiliary losses in any way as well ok.

Now, comes down the second module and in the second model what you see is that we

no more make any type castings available, because my inputs are still over there. It is a

same input which will be passed down through my second network, but then outputs

have to be collated and collected down in a separate variable container that is output 2

which corresponds to network two over there.

(Refer Slide Time: 10:49)

So, I run the same sort of predictors and then find out what is my number of correct

classification is done. So, it is the same thing over here within the else routine which is

when you do not have access to a GPU on your system, but you are running it down

purely on a CPU.

(Refer Slide Time: 10:51)

Now the next thing what you do is you zero down the gradients for all the optimizers.

(Refer Slide Time: 10:54)

And then you start calculating the losses. Now, it is the same criteria which is being used

for each of them.

(Refer Slide Time: 11:09)

And you find out your losses, and then you find out what is the gradient over all of these

losses.

(Refer Slide Time: 11:12)

And once you have the gradient or the del del w of j w calculated via are this backward

operator on each of these classes is when you get your optimizer running. Now, when I

do an optimizer dot step you need to keep one thing in mind that optimize a three which

corresponds to actually network 3. So, if we get up over here, you would find that within

your optimizer definition for your network 3 is what optimizer 3 is defined. And

optimizer 3 is defined parameters over which it works out or it just the fully connected

layers parameter on network 3.

So, whenever if there is a update or update rule in terms of an optimizer dot step. So, in

case of optimizer 1 and 2, it is going to update all the parameters or all the weights of the

network whereas for optimizer 3 it is going to update only the last terminal node over

there. Then we calculate out our losses and just have them stored down in your container.

(Refer Slide Time: 12:07)

Now, once having done that the next is at the end of each epoch what is the networks

performance in terms of the testing data over there or the validation performance. So, we

do the same thing. So, I just see if GPU is available then type casted typecast my inputs

and labels onto a GPU variable. And then I run down through my network 1, similarly I

through a network 2, and there is no retyped casting being done over there.

Now, this runs from for the CPU version over there as well and then we find out what are

the losses which comes down, and then take down my running losses for my testing part

over there. And then these were just some plots which we needed to do and now let us

look into what it starts down.

(Refer Slide Time: 12:43)

So, if you look at the first iteration itself so at the end of first iteration you see that the

training loss for network 1 which is where it was randomly initialized. And there was no

modifications being so everything had to be updated. So, it was randomly initialized and

no previous input was taken out. So, it starts at the training loss about 0.03.

The second model net 2 is where you had it pre initialized for an image net problem, and

then you are updating end-to-end the whole model, whereas model 3 or the network 3 is

where you had updated only the last terminal nodes over there and not the other nodes.

So, this was having our performance which so the error over there is definitely

something which is larger than the error of my model 2 on network 2 over there and that

is that is for sure.

However, if you look into the training error over there, the training error is still larger

than the training error in the earlier case just by our few factors. But then if you look into

the generalizability you would see that the testing accuracy for network 1 is lower than

the testing accuracy for network 3. And one of the reasons why this was happening down

has because network 3 is already pre-trained. So, some of these early layered features are

quite tuned onto capture these natural object like behaviours and their features.

And for that reason you saw that although it was not fitting out properly on the train set

where it says model conformity to the training data set is not so great. But then overall

capably to adjust to a larger corpus and a set of data is really good. So, and for that

reason the generalizability is much better for my testing accuracy case for model 3. Now,

it keeps on going like this and let us look what happens at the end of 10 epochs.

(Refer Slide Time: 14:33)

So, at the end of ten epochs what you see for this particular model is that your model

number 1 and model number 3. So, model number 1 is where do you started with some

random initialization and you were updating all the weights over there. Model number 3

is where do you started with an image net initialization, but you are updating only the

terminal nodes over there.

Now, they give you almost the same kind of a accuracy 80 percent of an accuracy for

both of them. A tad bit say almost like 60.64 is the difference in the accuracy which

comes down. But then 0.164 is not much of a difference 0.58 is the difference 0.56 is the

difference, but then that is not much of a difference to be attributed over there. Both of

them are almost at 80 percent behaviour.

Whereas, model 2 is where you took a pre trained model and then using this pre trained

model what you had done is you had updated only the terminal so you had updated all

the layers in to end over there. And because of that reason model 2 is where you get

down a much better performance accuracy coming down ok. Now, let us get into the

performance curves as we see over there.

(Refer Slide Time: 15:41)

So, this is for a model 1 where you have your training curve and you are testing curve

over there. So, definitely the losses fall down.

(Refer Slide Time: 15:47)

And if you look down into the model one you see that there is some sort of an over

fitting which comes on quite early on. So, you can see that there are training accuracy is

increasing, but then your test accuracy does not increase starts sort of like wavering over

there at around 80 percent.

(Refer Slide Time: 16:08)

Now, if you look down for a model 2, where you started with a very good prediction and

then did a end-to-end pre training over there.

(Refer Slide Time: 16:11)

So, your starting initial accuracy is almost at 93 percent and you go up to a 94 percent.

And most likely you would just saturate over here. So, even if you keep on increasing on

the training data set, it is just an over fitting, but then over fitting does not have much of

an effect on the generalizability over here.

(Refer Slide Time: 16:28)

Now, comes down the last model where I was just updating only my terminal nodes over

there. So, when I have updating that you see the accuracy still my testing accuracy is still

going to go up, but then it is much below the 80 percent mark. Whereas is in the earlier

case where I was updating end-to-end of the whole model, I could very easily come

down to 94 percent. So, that is a major improvement which we have with the case where

we try to update all the neurons over there all the layers from an end to end perspective.

(Refer Slide Time: 16:48)

Now, what we also did plot is the training losses the test losses and the test accuracy. So,

this was a very good comparison which we have for us actually.

(Refer Slide Time: 17:02)

So, if you look into model 2 is something which is more conformal in fact, like if you

were stopping down even at one epoch or two epoch you still see that there is a same

sum. So, it is almost a flat line which goes around at 94 percent not much of a change

which keeps on happening even if you are doing it for more number of epochs. So, that is

the generalizability which you get done.

And typically if you if you compare down in the earlier case of a GoogLENet, where you

have to wait for at least three or four epochs by the time you saw a good generalizability

performance coming down for a image net pre trained model which was trained end-to-

end. Over here, you see that already at the end of first epoch its refined in such a way

that the generalizability is already captured over there; and there is no much of a

difference which you get even if you keep on continuing over more number of epochs.

Now, one of the reasons this attribute set out because in a residual network, you are at the

end of it you are just learning down residual connections or what are the what is that

extra information which you need to recover from the signal in order to be able to

classify it out.

Now, this excess information which you recover because anyways you have your

residual transfers which is which transfers a part of the input to the output itself in order

for classification, now that is a good part of it. Now, intermediate what you are learning

down within this convolution corners are just the difference between these information

which has to be transferred. So, is there some extra kind of a feature which has to be

learnt up which is a difference feature between the input and output over there.

Now, there are not much of difference features which anyways would have to be learned

down. And for that particular reason when you take down a residual network and the

start itself it is it is so good. So, the generalizability of residual network is there already

in place; and for that that is the thing which you see also substantiated through this

particular experiment over here.

(Refer Slide Time: 18:58)

Now, let us look into the weights over there. So, this is for my network one which is

randomly initialized and then I look down what happens at the end of my training

process. So, each of these is a 7 cross 7 kernel, and then I have 64 of such kernels in my

first layer itself.

(Refer Slide Time: 19:12)

Now, this was at the end of the training. And if you look into the difference over here this

is what we get down. So, this kind of difference visualizations is the same like we had

done for our residual network case when we were doing around the regular one. Now, if

you look into the second layer weights over there, so we just take down one of these

convolution colonel over there or 3 cross 3 convolution colonel. And we take all the 64

channels which this 3 cross 3 convolution colonel had. So, this was before training, this

is after training and then these were the differences which got in the whole process of

training.

(Refer Slide Time: 19:25)

Now, let us look into the weights of a pre trained network. So, this is what other weights

which you look down after pre trained image net pre trained model for a several network.

You can make out much distinct features over here from these bits as compared to the

earlier case. So, these look almost like some sort of gradient operators which come down

over here.

Now, if you take a pair of weight, and try to look into the difference between pre trained

so just a pre trained model and a refined model, there is not much of a difference comes

out. So, that is what we see in these weights over there. So, there are slight differences

majority of them are near zero differences. And there may be some accentuations around

certain colours. And this is the domain adaptation point which takes place. So, there will

be a certain colours or certain features the blurred coronel sizes and everything which is

changing and that is the minor amount of difference which comes in.

However, keep one thing in mind that it is not necessary that none of these weights will

be updated this is what you see down over here. So, even if you had a pre trained and

you are retraining out over there, so certain neurons which are not positively impacting

the classification performance or the ones which will get which will have to be updated

in order, so that they influence their whole classification process in a good way, so that is

the fact which you see over here.

Now, in the second layer also you would see this is the kind of matrix which you get for

a pre trained network. And this is after you have trained it over 10 epochs and these are

the different bits. So, you see that not just the first layer but also the second layer second

residual block layer is also where there is an update of weights which goes down.

Now, let us look into the third configuration where we were just updating the final layers

over there. So, definitely that means, that since I was just updating the parameters from

the final layer, so none of these initial layers we are getting updated. So, there will not be

any change of weights as such coming down. In either the first layer or the second layer

or anything which goes down before that fully convolutional layer fully connected layer.

So, none of these convolutional layers will have any of my weight updates in the third

configuration. So, this is what I had to show down for transfer learning case.

So, as such transfer learning you have very simple process to do down. And for most of

our practical applications is where we would preferred going down with the transfer

learning problem.

(Refer Slide Time: 21:55)

And one thing which you need to keep in mind is; obviously, when you are updating and

modifying the network architectures over there. So, what are the parameters which you

will be learning and that that definitely decides a significant in a significant way it

decides on what will be your batch sizes and everything. So, you can in some of these

cases say for this kind of an image net kind of a problem over here and for these two

cases over there.

(Refer Slide Time: 22:22)

You would find out that obviously, training down end to end is something which is

performing good, but then even if you are not able to so it. So, this is the trade off which

you have. So, if you have a memory and GPU availability where you can choose to train

the network end-to-end then it is well and good.

But then if you have a limited availability over there then you can choose to train only

the final layers over there may be over a longer number of epochs, but it will still come

down to a convergence at some point of time. So, this is a trade off which we do from a

practical design perspective; so some of the aspects which we have discussed earlier in

terms of memory issues.

(Refer Slide Time: 12:52)

And my device computer issues are what we handle down in this way using a transfer

learning problem. So, with this we come down to an end for most of our work with just

classification based convolutional neural network, image input and a class level output.

The next week what we are going to do is something where you have an image net input,

you have a matrix output or something of the same size of an image.

So, in terms of solving a semantic segmentation problem which is more of something

within the regression framework pipeline; you also have a other issues of our region

proposals and an average pooling for object localization which we will be doing over

there.

So, then stay tuned for the advanced topics which comes out for the next few weeks over

there, then going on to generating models and then subsequently onto video analytics.

So, still then stay tuned.

Thanks.

