Deep Learning for Visual Computing
Prof. Debdoot Sheet
Department of Electrical Engineering
Indian Institute of Technology, Kharagpur

Lecture - 24
Gradient Descent Learning Rule

Welcome. So, in the last lecture, we have been going around with how to update down

different networks.
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Lecture 24a: Gradient Descent Learning Rule

Updating parameters once every epoch

Load Packages

In [ ]: %matplotlib inline
import torch
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable

And, there are 3 different kinds of updates which you can do is what I was speaking
around. So, today I am going to actually demonstrate out on how these 3 different kinds
of updates rule in a neural network would work. So, one of them is where you have all
the gradients accumulated at the end of the network and then within each epoch. So, you
keep on sending all the samples through it, all the samples whichever you have in your
training data and then you sum up all the errors over there and then you take a gradient
of the error and you back propagate throughout the network, that is the way of how I was

explaining you the whole concept of back propagation in its own way.

There can be another way, where say you are not able to handle that much of data. So,
say that your training data is something like 100 GB in size your system RAM is limited
to some 8 GB or 4 GB. You will never be able to actually put down the whole thing and

your model say it consumes about a few 100 MBs over there your system voice and



everything is consuming and out of your 8 GBs you are just left with a viable of 5 GB

that is the maximum what you can do.

Now, if you load down your data, the maximum data you can load is 5 GB never 100 GB
at a point of time and in that case we came up with something which is called as a batch
learning rule in which in the idea was that you divide this whole set of your training
examples into smaller subsets each of them is called as a batch, you feed within each
epoch you are going to feed down all the batches. However, you feed one batch you get
your error now you can back propagate that one through the network then you feed the
next batch you get your error back provided through the network. And, the reason why
we cannot just accumulate out everything and do a back propagation is because you have
an response of the each layer on your output which is also multiplied down with the

gradient of the error coming down. So, that was how our gradient descent was derived.

Now, since you need to preserve each and every instances output from the network for
updating what is inside the network of the weights over there, so, you can use only just a
finite number of samples and you cannot just somehow accumulate over the samples
over there. So, this kind of a thing is what is called as a batch update rule and the other
one is plain and simple vanilla update rules in which you put down you put a sample you
get it is error you back propagate it out, then you put the next sample you get it is error
back propagate and then what this would mean is that say you have some 10000 samples
or 60000 samples as an MNIST in your training. So, within each epoch you will have
sixty thousand times of an update of the network which is really large from a
computational stand point. So, you will have to compute out gradient for every single

sample that will be computed 60000 times per epoch and you will do it.

On the other side, if you compare it with the first one where I am just going to update the
whole network at the end of every epoch it is just once then I am going to calculate out
the gradient and it is once that I am going to do this back propagation and update over
there. So, this is a plain difference which comes out and in fact, this has a very

significant role when you look at the amount of time it is going to incur.

So, let us get down with each of them. So, how we have divided is we actually have 3

sub parts of this lecture number 24 which is kept on the jit release for us. So, 24a is to do



with updating parameters once every epoch. So, this is a scratch pad written down for

your own understanding of how we change down, once we can do that every epoch.
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Load Packages

In [ ]: %matplotlib inline
import torch
import matplotlib.pyplot as plt
import torch.nn as nn|
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import numpy as np
import time

Load Data

So, our customary first part of the ceremony of running down any code is just to get

down your libraries which are there on the header.
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Load Data

In [2]: transform = transforms.Compose([transforms.ToTensor()])
BatchSize = le@

trainset = torchvision.datasets. MNIST(root="./MNIST', trainaTrue,
downloadeTrue, transformetransform)
trainloader = torch.utils.data.Dataloader(trainset, batch_sizesBatchSize,
shufflesTrue, num_workerssd) # Creating

testset = torchvision.datasets.MNIST(roots'./MNIST', trainsFalse,
downloadsTrue, transformstransform)
testloader = torch.utils.data.Dataloader(testset, batch_sizesBatchSize,
shufflesFalse, num_workerssd) # Creating

Next, you are going to get down your data now look over here that though I defined

down something called as a data within a batch size of 100 and that is just from the data



loader perspective. It does not have anything to do with my trainer perspective inside

over there.
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downloadsirue, transtormstranstorm)
trainloader = torch.utils.data.Dataloader(trainset, batch_sizesBatchSize,
shufflesTrue, num_workers=4) # Creating

testset = torchvision.datasets.MNIST(root='./MNIST', trainsFalse,
download=True, transform=transform)
testloader = torch.utils.data.Dataloader(testset, batch_sizesBatchSize,
shufflesFalse, num_workerssd) # Creating

In [ 1: | # Check ovailability of GPU
use_gpu = torch.cuda.is_available()
if use_ppu:

print{'GPU is available!')

Neural Network

Now, I checked down my GPU if that is available let us well and good.
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In [ ]: class NeuralNet(nn,Module):
def _init_ (self):

super(Neuralhet, self)._init_ ()

self.Layerl = nn.Sequential(
nn.Linear(28%28, 400),
nn.ReLl(),
nn.Linear(d4@@, 256),
nn.RelU())

self.Layer2 = nn.Sequential(
nn.Linear(256, 18))

def forward(self, x):
x = self.Layerl(x)
x = self.Layer2(x)
return x

In [ ]: net = NeuralNet() i

And, then now, I define my network and this is the plain valley network as we were
using down in the earlier example for doing for showing you different kind of cost

functions and the dynamics. So, here also it is the same one. So, you have a 28 cross 28



batch of your 110 digits in MNIST which amounts to 700 and 84 neurons. They are
connected down to 400 neurons, these are connected down to 256 neurons and this part
of it which is your layer one is what constitutes the feature discovery part of the layer
with 2 different hidden neural network layers and that is connected down to the final
classification which match from 256 neurons on to just simple 10 neurons and then this

completes down my a complete network.

Now, on the forward pass of the network what I need to do is given any input to layer 1, I
am going to get down certain output and then I feed that to my layer 2 definition over
here which is my classification part of the wing and I get my output coming down over

here and this defines my plain simple neural net.
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In [ ]: iterations = 1@
learning_rate = 8.1
criterion = nn.CrossEntropyloss()

Plotace = []
trainLoss = []

for epoch in range(iterations): # Loop over the dataset multiple times
start = time.time()
correct = @
runningloss = @
total = @
for i, data in enumerate(trainloader, @): # i--»>Batch number
t the inputs

Now, if I have a GPU available then let us just convert it onto a GPU array. So, that it is
compatible while running it out on a GPU and then we start down our simple classified
training routine over there. Now, in the classified training routine I choose to just do with
10 epochs, this is just to keep it plain, short, sweet and simple I do not have any issues, a
learning rate of 0.1 and the criterion over here because it is a classification problem
which we are just trying to do we are just going to stick down with the cross entropy
loss. Now, you can use a negative log, likelihood loss you can use a multi margin loss,
anything as you would on, but we are just going to stick down to simple cross entropy or

binary cross entropy loss over here.
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In | ]:|1terations = 18
learning_rate = 8.1
criterion = nn.crnssEhtrnpyLoss()

Plotacc = []
trainLoss = []

for epoch in range{iterations): # Loop over the dotaset multiple times
start = time.time()
correct = @
runningloss = @
total = @
for 1, data in enumerate(trainloader, 8): # 1--»Batch number
# get the inputs
inputs, labels = data
if use_gpu:
inputs, labels = Variable(inputs.view(-1, 28*28)).cu
else:
inputs, labels = Variable(inputs.view(-1, 28*28)), V.

So, now, within my iteration of over epochs, it is going to iterate over a lot of epochs and
for me it is going to be just any epochs over which I am going to iterate it out. Now, over
here what I am going to do is one is just starting timer to keep a tab of how long it takes
to execute each of them and that is to show you exactly what is the difference and trade

off you get down while shifting from one to the other.
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for 1, data in enumerate(trainloader, 8): # i--3Batch number
# get the inputs
inputs, labels = data
if use_gpu:
inputs, labels = vVariable(inputs.view(-1, 28*28)).cuda(), Variable(la
else:
inputs, labels = Variable(inputs.view(-1, 28*28)), Variable(labels)

outputs = net(inputs) # forward
loss = criterion(outputs, labels) # calculate loss
if 1 == 8: #First batch

totalloss = loss

else:
totalloss += loss

totalloss = totalloss/(i+1) # dividing accumulated loss by total no. of batch
# updating parameters once in every epoch
net.zero_grad() # zeroes the gradient buffers of all parameters

Now, here the first part is basically create down your data loader such that it can keep on

loading all the data and then you in case you have your GPU available then we are just



going to convert my inputs and all the labels into a GPU compatible array and then you
do a forward pass over the network. Now, within each epoch once you have a forward
pass of the network you get certain output coming down, over that you need to find out

your loss now once your loss comes down over there.
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[ else:

inputs, labels = Variable(inputs.view(-1, 28*28)), Variable(labels)

outputs = net(inputs) # forword
loss = criterion(outputs, labels) # calculate Loss
if i == 8: #First batch

totalloss = loss

tlse:
totalless += loss

totalloss = totalloss/(i+l) # d

] '.f_'(].(‘.'.f'.:i parameters once 1

net.zero_grad() # zerces the g

totalloss.backward()

for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate) # weight = weight - learning_rat

trainloss.append(totalloss.data[@])

Now, what you need to actually understand is that it is going to run over all the batches.
So, in your batch loader what you have done is that it is going to fetch down some 100
images or something. So, let us go down yeah. So, your batch size is 100, it means that
technically it is going to fetch down 100 images in one burst from your hard drive and
now, what I am going to do is getting back over here I am actually going to cumulate my
errors over all such ones which are fetched out. So, technically on my training data set

within MNIST you have 60000 samples, I am fetching down 100 at a time.

So, that means, that I will have 600 such fetch operations within one single epoch in

order to get all my data set coming down from my hard drive side over there.
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if use_gpu:
inputs, labels = Variable(inputs.view(-1, 28*28)).cuda(), variable(la
else:

inputs, labels = Variable(inputs.view(-1, 28*28)), Variable(labels)

outputs = net(inputs) # forward
loss = criterion(outputs, labels) # calculate Loss
if | == @: #First batch

totalloss = loss

else:
totalloss += loss

totalloss = totalloss/(i+1) # dividing occumulated loss by total ne. of batch
# updating parcmeters once in every epoch
net.zero_grad() # zeroes the gradient buffers of all parameters
totalloss.backward()
for f in net.parameters():

f.data_cub (f.orad.data * laarning rata) # weiaht = weinht - learning rat

So, when I am calculating out the loss, I need to accumulate all of these losses. So, that I
get known the total error at the end of the epoch itself and that is what I am just doing it
over here. Now, the point which goes down is that I need to find out what is the total loss

at the end of being able to load down all of these ones.
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runningloss = @
total = @
for i, data in enumerate(trainloader, @8): # i--:Botch number
# get the inputs
inputs, labels = data
if use_gpu:
inputs, labels = Variable(inputs.view(-1, 28*28)).cuda(), Variable(la
else:
inputs, labels = Variable(inputs.view(-1, 28*28)), Variable(labels)

outputs = net(inputs) # forward
loss = criterion(outputs, labels) # calculate Loss
if i == @: #First batch

totalloss = loss

else:
totalloss += loss

totalloss = totalloss/(i+1) # dividing occumulated loss by t

And, now given the fact that this i which I am using over here this is a variable

commodity. So, for me it comes down that this will be iterating from 0 till 599 and that is



equal to 600 over there and it depends on how many number of batch fetches you had

over there. So, that is why I just divided down by i plus 1.

(Refer Slide Time: 08:16)

~ Jupyter lecture24a s @ g
File  Edit  View Insert  Cell Kemel Widgets Help Trusted | & |F;ﬂcw£ 0
B+ G B 4 % HRn B C coe ML

I else:

inputs, labels = Variable(inputs.view(-1, 28*28)), Variable(labels)

outputs = net(inputs) # forward
loss = criterion{outputs, labels) # calculate Loss
if i == @: #First batch

totalloss = loss

else:
totalloss += loss

totalloss = totalloss/(i+1)|# divi

# updating parameters once in e

net.zero_grad() # zerces the g

totalloss.backward()

for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate) # weight = weight - Learning_rat

cumulated Loss by total no. of batch

t buffers of all parameters

trainLoss.append(totalloss.data[@])

Now, this plus 1 comes down from the factor that i is a number which starts from a zero
indexing. So, the highest number which it would get down is 599, in order to get down
the total size or the total number of numbers between the range of 0 to 599, that is the
last value plus 1. So, that is a simple argument why you have an i plus 1 written over
there. Now, after that you zero down your gradients then you have a backward on the

total loss which is taking down nabla of the cost function itself.
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else:

totalloss += loss

totalloss = totalloss/(i+l1) # dividing accumulated Loss by total no. of batch
# updating parameters once in every epoch
net.zero_grad() # zerces the gradient buffers of all parameters
totalloss.backward()
for f in net.parameters():

f.data.sub_(f.grad.data * learning_rate) # weight = weight - Learning_rat

trainloss.append(totalloss.data[@])

for data in testloader:
inputs, labels = data
if use_gpu:
inputs, labels = Variable(inputs.view(-1, 28*28)).cuda(), labels.cuda
else:
inputs, labels = Variable(inputs.view(-1, 28*28)), labels

Now, once you have this derivative of the cost function taken down and what we will be
doing done is actually to do an update for following down the vanilla gradient descent

approach over there and that is typically what we do.
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totalloss.backward()
for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate) # weight = weight - Learning_rat

trainloss.append(totalloss.data[@])

for data in testloader:
inputs, labels = data
if use_gpu:
inputs, labels = Variable(inputs.view(-1, 28*28)).cuda(), labels.cuda
else:
inputs, labels = Variable(inputs.view(-1, 28*28)), labels
total += labels.size(d)

outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
correct += (predicted == labels).sum()

Now, once we have this whole thing updated over here, my whole purpose is that let us
see what sorts the validation which comes from over there. Now, for validation we are
just going to load down it on my testing data set which is 10000 examples over there.

Now, for each of them I just get my output coming down provided a input to this



network, so, the network which is updated as part of this particular epoch at any given

epoch whatever is the state of the network.
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for data in testloader
inputs, labels = data
if use_gpu:
inputs, labels = Variable(inputs.view(-1, 28%*28)).cuda(), labels.cuda
else:
inputs, labels = Variable(inputs.view(-1, 28*18)), labels
total += labels.size(B)

outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
correct +n (predicted == labels).sum()

Plotacc.append(correct/float(total))

epochTimeEnd = time.time()-start

print('At Epoch {:.0f}: Loss = {:.6f} , Acc = {:.4f}".format(epoch+l,totallos
print('Epoch completed in {:.8f}m {:.8f}s".format(epochTimeEnd // 68, epochTi

Then we get down our predicted values and then finally, we check if the predicted value
is equal to the label over there and then sum it up in order to get done the number of

correctly classified samples over the whole batch.
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Plotacc.append(correct/tloat(total))

epochTimeEnd = time.time()-start

print{'At Epoch {:.8f}: Loss = {:.6f} , Acc = {:.4f}'.format{epoch+l,totallos
print{'Epoch completed in {:.8f}m {:.0f}s'.format{epochTimeEnd // €2, epochTi

fig = plt.figure()

plt.plot(range(epoch+l),trainloss, 'r-',labels’Cross Entropy Loss')
plt.legend(loc="best")

plt.xlabel('Epochs')

plt.ylabel('Training Loss')

fig = plt.figure()
plt.plot{range(epoch+l),Plotacc, 'g-", label="Accuracy’)
plt.legend(loc="best")

plt.xlabel{ 'Epochs’)

plt.ylabel( ' Testing Accuracy’)

print(‘Finished Training')

And that is what is going to run out my complete system for trying to do an update once

every epoch.
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fig = plt.figure()

plt.plot{range(epoch+l),Plotace, 'g-',label="Accuracy')
plt.legend(loc="best")

plt.xlabel( Epochs')

plt.ylabel('Testing Accuracy')

print(‘Finished Training')

At Epoch 1: Loss = 2.304168 , Acc = 8,1817
poch completed in @m 25

At Epoch 2: Loss = 2.3080372 , Acc = 8,1220

Epoch completed in @m 25

At Epoch 3: Loss = 2.296595 , Acc = 8,1514

Epoch completed in @m 25

At Epoch 4: Loss = 2.292811 , Acc = 8,2010

Epoch completed in @m 25

At Epoch 5: Loss = 2.288996 , Acc = 8,2553

Ennch comnleted in Bm Js

You can pretty much see how much time it takes. It takes almost like 2 seconds to
complete an epoch which is pretty fast to say. There are 60000 samples which are going
through it and it is getting updated at every point of thing. However, though the accuracy
is not that great over there. So, somewhere around the tenth epoch we are standing at just

merely 46 percent of accuracy.
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Yes, not something to be really excited at a point of time.
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However given the fact that we started with a 10 percent accuracy which is perfect I
mean that is a random coin toss, because you have 10 classes. If you are randomly trying
to, it is something like this; you have 10 buckets and I am throwing a ball to enter into
one bucket and this ball may enter into the right bucket or it may enter into a wrong
bucket. So, there is one ball which has the number 1 written to it, if it there is a 1 by 10
chance that it will land into my bucket number 1. The next ball will also have a random
one tenth chance that it will land up into my current bucket. So, technically your random
guess accuracy will be somewhere around 10 percent whereas, once you start learning
down over there, so the accuracy keeps on growing and then we figure out that it goes to

somewhere around 45 percent on this case.
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At Epoch 6: Loss = 2.285134 , Acc = @.3138
Epoch completed in @m 2s

At Epoch 7: Loss = 2.281281 , Acc = 8,3617
Epoch completed in @m 2s

At Epoch 8: Loss = 2.277184 , Acc = 8.4838
Epoch completed in @m 25

At Epoch 9: Loss = 2.273@856 , Acc = 8.4358
Epoch completed in @m 25

At Epoch 1@: Loss = 2.268887 , Acc = 9.4612
Epoch completed in @m 2s

Finished Training

2305
= (ross Entropy Loss

2300
2295

§ 2200

L]

Now, the critical part to see is that it takes roughly 2 seconds to train every epoch and

that is pretty fast over there also the loss curve which you see is quite smooth.
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Updating parameters for every batch

Load Packages

In [ ]: %matplotlib inline
import torch
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import numpy as np
imnart time

However, given that fact there is still a challenge which we were facing down and that
challenge is if I am not able to load all of those 60000 samples of data together onto my

memory and then I will have to actually update it at every single point of time.
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Updating parameters tor every batch

3

Load Packages

In [ ]: Smatplotlib inline
import torch
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import numpy as np
import time

And, that is where this batch learning rule comes down to play.
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Load Data

In [ ]: transform = transforms.Compose([transforms.ToTensor()])
BatchSize = 180

trainset = torchvision.datasets.MNIST(root='. /MNIST', trainaTrue,
downloadsTrue, transformetransform)
trainloader = torch.utils.data.Dataloader(trainset, batch_sizesBatchSize,
shufflesTrue, num_workerssd) # Creating

testset = torchvision.datasets.MNIST(root='./MNIST', trainsfalse,
downloadsTrue, transformstransform)
testloader = torch.utils.data.Dataloader(testset, batch_sizesBatchSize,
shufflesfalse, num_workerssd) # Creating

Now, batch learning over here what we will be doing is you have a batch size which is
set down as 100, it means that every time you are fetching down some 100 images at one

single shot from the drive and then using it.



(Refer Slide Time: 11:36)

: JUpytEI’ |BC'(UI'824b (unsaved changes) ﬂ Logout
File  Edit View Inset  Cell Kemel Widgets  Help Trusted |P-,-'.han2 0]
B+ @B 44+ HRn B C Codeo -

In [2]: transform = transforms.Compose([transforms,ToTensor()])
Batchsize = 1@@

trainset = torchvision,datasets.MNIST(root=",/MNIST', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.Dataloader(trainset, batch_size=Batchsize,
shuffle=True, num_workers=4) # Creating

testset = torchvision.datasets.MNIST(root='./MNIST', train=False,
download=True, transformetransform)
testloader = torch.utils.data.Dataloader(testset, batch_size=BatchSize,
shuffle=False, num_workers=d4) # Creating

In [ ]: | # Check ovailobility of GPU
usé_gpu = torch.cuda,is_available()
if use_gpu:

print(‘'GPU is available!")

Now, once the data loader is done, I check out whether my GPU is available and voila.
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Neural Network

In [ ]: class NeuralNet(nn.Module):
def _init_ (self):

super(NeuralNet, self)._init_ ()

self.Layerl = nn.Sequential(
nn.Linear(28%18, 460),
nn.ReLU(),|
nn.Linear(408, 256),
an.RelU())

self.Layer2 = nn.Sequential(
nn.Linear(256, 18))

def forward(self, x):
x = self.Layeri(x)
x = self.Layer2(x)
return x

Once that is there, | have my neural network which is synthesized and that it is the same
neural network. So, I am not technically changing out anything over there on the

network.
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nn.Linear(4e@, 256)

nn.RelU())

self.Layer2 = nn.Sequential
nn,Linear(256, 18))

def forward(self, x):
x = self.layerl(x)
¥ = self.layer2(x)
return x

In [ ]: net = Neurallet()
if use_gpu:
net = net.cuda()

Train Classifier

And, that does not need any further definition. So, check out I get my new electric

converted on to cuda and then I try to start my classifier.
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Train Classifier

In [ ]: iterations = 1@
learning_rate = 0.1
criterion = nn.CrossEntropyloss()

Plotace = []
trainloss = []
runningloss = @

for epoch in range(iterations): # loop over the dataset multiple times
start = time.time()

correct = @

runningloss = @

total = @

for i, data in enumerate(trainloader, @): # 1i--»Batch number
# gt the 4 ity

Now, here also I am going to train it over 10 epochs.



(Refer Slide Time: 12:08)

: JUpyter |eCtl.II'824b (unsaved changes) ﬁ Logout
File  Edt  View Inset  Cell Kemel  Widgets  Help Trusted  # |P-,-'.ha12 0]
B o+ @O B 44 HRun B|C code v =

# Updating parameters for every batch
net.zero grad() # zeroes the gradient buffers of all parameters
loss.backward()
for f in net.parameters():

f.data.sub_(f.grad.data * learning_rate) # weight = weight - learning
runningloss += loss.data[@]

(trainloss.append(runningless/(i+1))

for data in testloader
inputs, labels = data
if use_gpu:
inputs, labels = Variable(inputs.view(-1, 28*28)).cuda(), labels.cuda
else:
inputs, labels = Variable(inputs.view(-1, 28*28)), labels
total += labels.size(d)

outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)

However, the difference which comes down is in terms of my loss over here, because this
loss over here is just what is computed poor, sorry. So, you have your loss which is
computed over here which is for every epoch. Now, if you remember the earlier one in
the earlier case I was basically calculating out these losses and then cumulating out the
loss over here somewhere which is outside the inner loop which runs over the total

number of batches which is loading.
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inputs, labels = Variable(inputs.view(-1, 28*28)).cuda(), Variable(la|
else:

inputs, labels = Variable(inputs.view(-1, 28*28)), Variable(labels)

outputs = net(inputs) # forward
loss = criterion(outputs, labels) # calculate Loss

# Updating parameters for every batch
net.zero grad() # zeroes the gradient buffers of all parameters
loss.backward()
for f in net.parameters():

f.data.sub_(f.grad.data * learning_rate) # weight = weight - Learning
runningloss += loss.data[@)]

trainLoss.append(runningloss/(i+1))

for data in testloader
inputs, labels = data
if use_gpu:




So, this update over here was happening once every epoch itself whereas, over here you
would see this update is happening within every batch itself. So, this is present within the

inner loop not within the outer loop and that is the difference which comes down with a

batch loader.
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for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate) # weight = weight - learning

runningloss += loss.data[e]
trainloss.append(runningloss/(i+1))

for data in testloader
inputs, labels = data
if use_gpu:
inputs, labels = Variable(inputs.view(-1, 28%28)).cuda(), labels.cuda
else:
inputs, labels = Variable(inputs.view(-1, 28*28)), labels
total += labels.size(@)

outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
correct += (predicted == labels).sum()

Obviously, it is supposed to be a bit more computationally expensive. So, let me just run
it down because. So, we can just utilize the rest of the time to discuss around it. Now,
once you have this updated down, so, there will be multiple number of updates which
will happen down in every epoch and then you find out what is the total loss at the end of

that epoch and that is what you are storing now.
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inputs, labels = Variable(inputs.view(-1, 28%*18)), labels
total += labels.size(@)

outputs = net(inputs)
_» predicted = torch.max(outputs.data, 1)
correct += (predicted == labels).sum()

Plotace.append(correct/float(total))

epochTimeEnd = time.time()-start

print('At Epoch {:.8f}: Loss = {:.6f} , Acc = {:.4f}".format{epoch+1,runningl
print('Epoch completed in {:.8f)m {:.8f)s'.format(epochTimeEnd // &8, epochTi

fig = plt.figure()

plt.plot(range(epoch+l),trainloss, 'r-',label="Cross Entropy Loss')
plt.legend{locs'best")

plt.xlabel( 'Epochs')

_ plt.vlabel('Training Loss')

On the other side, within every epoch I am also trying to do a validation with the test
loader coming down over there and then we will have our timing and all of the other

stuff predicted out over there.
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plt.plot(range(epoch+l),Plotace, 'g-',label="Accuracy')
plt.legend(loc="best")

plt.xlabel( 'Epochs')

plt.ylabel('Testing Accuracy')

print('Finished Training')

At Epoch 1: Loss = 8.576344 , Acc = 8.9270
Epoch completed in @m 2s
At Epoch 2: Loss = 8.224308 , Acc = 6,9503
Epoch completed in @m 25
At Epoch 3: Loss = ©.158388 , Acc = 8.9594
Epoch completed in @m 25
At Epoch 4: Loss = 8.119768 , Acc = 8,9675
Epoch completed in ém 25
At Epoch 5: Loss = 8.895769 , Acc = 8.9676
Epoch completed in @m 25
At Epoch 6: Loss = 8.878275 , Acc = 8.9742
Epoch completed in @m 2s

Now, typically you see that here also it takes almost the same time, about 2 seconds to do
it and it starts with a decently better accuracy than you had in the earlier case. Now, this
should be coming down as a question to you, as to why did it actually start with a higher

accuracy as compared to what it was in the earlier case.
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Because, in the earlier case you did see that barely it was able to get down to about 45
percent of our accuracy, whereas here, it just immediately started with having 92.7

percent of accuracy.
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At Epoch 1: Loss = @.576344 , Acc = 8.9278
Epoch conpleted in om [
At Epoch 2: Loss = @.224388 , Acc = 8.9583
Epoch completed in @m 25
At Epoch 3: Loss = @.158388 , Acc = 8.9594
Epoch completed in @m 25
At Epoch 4: Loss = @.119768 , Acc = 8.9675
Epoch completed in @m 25
At Epoch 5: Loss = @.895769 , Acc = 8.9676
Epoch completed in @m 25
At Epoch 6: Loss = 0.878275 , Acc = 8.9742
Epoch completed in @m 25
At Epoch 7: Loss = @.865687 , Acc = 8.9755
Epoch completed in @m 25
At Epoch 8: Loss = 8.855337 , Acc = 8.9783
Epoch completed in @m 25
At Epoch 9: Loss = 8.847487 , Acc = 8.9781

Now, remember this one thing in the earlier case, the whole network was actually
updated at most 10 times that is a total number of times though everything was getting

updated. Here, within every epoch it actually gets updated 600 times. So, your weights



have changed down 600 times within every single iteration what it has done and now by

the end of tenth epoch there have been 6000 such updates which have happened.

Now, if you go back to the earlier case and actually run it over an iteration of 6000
epochs you would actually tend to come down to the same accuracy level and the same
kind of a curve as you are getting down over there. So, in the earlier case, if you were
running it down initially for 600 epochs you would be getting down this accuracy. If you
have run it down for say 602, which is 1200 epochs you would be somewhere around

this accuracy point as compared to what you are having over here.
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And, that is a distinct advantage we are trying to do a batch update you are taking almost
the same amount of time. But, you have a much faster way of coming down to a
convergence, because the number of times it is actually updating itself and correcting the
mistakes which it was making is much large, though it is not updating itself on the same

data. It is getting a newer instance of the data and it is looking down.

So, it is the same thing as say if you are trying to learn up a subject. So, the more the
number of books across which you study and you give an exam in between or get
yourself assessed the better you are in learning a subject’s task rather than taking a bigger
book, a fatter book and trying to mug it up across the whole semester. So, that does not
technically always find out a way whereas, if you have this smaller handout books or

notes taken down from multiple people and you try to get into a subject because you are



getting exposed to more and more different variants of how you learned on a particular
topic. So, it is the same thing which comes down as a batch update learning rule for a

neural network as well.
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Updating parameters tor every training sample

Load Packages

In [ ]: Ematplotlib inline
import torch
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import numpy as np
import time

Now, that would bring me to the next one which is a instance or every sample update and
this is let us say the same as you basically, read one section of a topic in a book and try to
correct yourself for anything else asked on that particular topic and let us see what comes
down. This is quite interesting because here what would happen. So, let us just do a walk
through. The walk through is pretty simple you start with just loading down your initial

forms over there then you do a data loader.
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In [2]: transform = transforms.Compose([transforms,ToTensor()])
trainset = torchvision.datasets.MNIST(root="./MNIST', train=True,
download=True, transform=transform)
testset = torchvision.datasets.MNIST(root='./MNIST', train=False,
download=True, transform=transform)
BatchSize = le@
testloader = torch.utils.data.Dataloader(testset, batch_size=BatchSize,
shufflesFalse, num_workers=4) # Creating

In [3]: print(‘No. of training samples = ‘+str{len(trainset)))

No. of training samples = 66888

In | ]: | # Check availability of GPU
use_gpu = torch.cuda.is_available()
if use_gpu:

print('GPU is available!')

And, then over here it is just to print down your number of samples and there are 60000
samples. So, technically, that means, that within every epoch if I am going to do an

update per sample, so, I am going to do that update 60000 times over there.
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GPU 15 available!

Neural Network

In [ ]: class NeuralNet(nn.Module):
def __init_ (self):

super (Neuralhet, self).__init_ ()

self.Layerl = nn.Sequential(
nn.Linear(28%28, 420),
nn.RelU(),
nn.Linear(48@, 256),
nn.RelU())

self.Layer2 = nn.Sequential(
nn.Linear(256, 18))

def forward(self, x):

Now, I define my network which is the same network. I get it on my GPU put it down

because I have a GPU available and then [ start my training instance over here.



(Refer Slide Time: 16:40)

:‘Jupyter |ECtur824C (ungaved changes) F Logout
Insert Cell Kermne Widgets Help Trusted  # |Python2 O
B+ @B 2+ HRn B C Code v @
Train Classifier

In [ ]: iterations = 18
learning_rate = 6.81
criterion = nn.CrossEntropyloss()

Plotacc = |
trainloss = []

for epoch in range(iterations): # loop over the dataset multiple times

start = time.time()

correct = @

runningless = 8

total = @

for i in range(len(trainset)): # i-->5ample number
# get the input
inouts = trainset[ilfa]

I will really set this one running; it is going to take a bit amount of time. In fact, it is a
significant amount of time as you would see down over there. So, this is going to run
down over 10 iterations you see a distinct difference in the learning rate which I have
taken down over there because this is significantly lower than the learning it in the earlier
cases now. The reason why this is so is, you are going to update down at every single
sample as it keeps on coming down. Now, your total gradient which comes down is
dependent very much on what sample was over there. So, every sample is not going to

have the same range of error.

In the earlier cases because you were taking on an average over all the samples over
there, average of the error, so, it was getting down to some sort of average tendency a
lower bound over there, a much more consistent bound between multiple batches which
come down in an epoch. Whereas, over here for every single sample it is going to be
either it can be 0 or it can be very large. So, if there is a significant deviation over there
would be a very large error which comes down and that is going to impact actually the

total weight update which you are getting down and in your whole thing.

Now, in order to keep it on a safer side we would like to put down a learning rate which
is lower so that at any point of time the dynamic range of the weights do not just get

overwhelmed by an unguided down by the dynamic range in which my updates are



changing. So, that is the only reason for keeping this learning rate at a lower point of

time.
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Plotace = []
trainLoss = []

for epoch in range{iterations): # loop over the dotaset multiple times
start = time.time()
correct = @
runningloss = @
total = @
for 1 in range(len(trainset)): # i--»Sample number
# get the inputs
inputs = trainset[i][e]
labels = trainset[i][1]*torch.ones(1)
if use_gpu:
inputs, labels = Variable(inputs.view(-1, 28*28)).cuda(), Variable(la
else:
inputs, labels = Variable(inputs.view(-1, 28*28)), Variable(labels.lo

outputs = net(inputs) # forward

Tarr = sribanianfakndkes Tahalel 4 cal sl aba lacs

And, then, I basically start my whole iterator over here.
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PMA R = v
total = @
for i in range(len(trainset)): # i-->Sample number
# get the inputs
inputs = trainset[i][e]
labels = trainset[i][1]*torch.ones(1)
if use_gpu:
inputs, labels = variable(inputs.view(-1, 28*28)).cuda(), Variable(la
else:
inputs, labpls = Variable(inputs.view(-1, 28*28)), Variable(labels.lo

outputs = net(inputs) # forward
loss = criterion(outputs, labels) # calculate loss

# Updating parameters for every training smaple

net,zeru_grad() # zeroes the gradient buffers of all parameters
loss. backward()

for f in net.parameters():

f.data,sub_(f.grad.data * learning_rate) # weight = weight - learning
rinningl nee 4= lnee. datalal

Now, in the inner range what I do is, as in the earlier case I was actually doing a match

loader. So, I was able to load down 100 images per batch, but here I am just going to



load down 1 image at a point of time or this is equal to setting down a match size of 1,

you can say.

Now, for each image I am going to find out my output whatever it is then get down the
loss which is my out of my criterion. Now, once the loss is calculated down we do a
zeroing of all the gradients and then do a back propagation over find out a gradient of the
loss itself on nabla of the cost function and then write an update rule over here and here

what I am doing is basically, I sum up the average loss taken down over each of them.
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# Updating parame
net.zero_grad() #
loss.backward()
for f in net.parameters():

f.data.sub_(f.grad.data * learning_rate) # weight = weight - Learning
runningloss += loss.data[@)]

trainLoss.append(runningloss/(i+1))

for data in testloader:
inputs, labels = data
if use_gpu:
inputs, labels = Variable(inputs.view(-1, 28*28)).cuda(), labels.cuda
else:
inputs, labels = Variable(inputs.view(-1, 28%*28)), labels
total += labels.size(8)

Anrnnte = narlinmire)

So, technically this means that, since I have 60000 examples present down within one
single training set in 1 epoch. So, there will be 60000 times there would be updates
happening over there. Now, pitch this against the earlier case. In the earlier case you had
600 times of an update per epoch, here you are able to have 60000 times of an update per
epoch. The downside do is that every time it is with one single sample. So, you are not
tending to be on the average case of the errors which is coming down over there. As well

as you are going to solve much more number of update equations.
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for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate) # weight = weight - learning
runningloss += loss.data[d]

trainLoss.append(runningloss/(i+l1))

for data in testloader:
inputs, labels = data
if use_gpu:
inputs, labels = Variable(inputs.view(-1, 28*28)).cuda(), labels.cuda
else:
inputs, labels = Variable(inputs.view(-1, 28*18)), labels
total += labels.size(d)

outputs = net(inputs)
_» predicted = torch.max(outputs.data, 1)
correct +u (predicted == labels).sum()

So, 6000 versus 60000 that is 100 times more is the amount of compute which will

happen downpour epoch over here and that is how it is getting solved.
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for data in testloader:
inputs, labels = data
if use_gpu:
inputs, labels = Variable(inputs.view(-1, 28*28)).cuda(), labels.cuda
else:
inputs, labels = Variable(inputs.view(-1, 28%*28)), labels
total += labels.size(@)

outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
correct += (predicted == labels).sum()

Plotacc.append(correct/float(total))

epochTimeEnd = time.time()-start

print('At Epoch {:.8f}: Loss = {:.6f} , Acc = {:.4f}'.format
print{'Epoch completed in {:.8f}m {:.0f}s'.format{epochTimeE -3

So, the rest of it is pretty simple that within each epoch once the training per sample
based is over and then we write down the test data loader which loads up the test

example and then with within every epoch, I basically try to look into it.
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fig = plt.figure()

plt.plot{range(epoch+l),Plotacc, 'g-",labels'Accuracy')
plt.legend(loc="best")

plt.xlabel( Epochs")

plt.ylabel('Testing Accuracy’)

print(‘Finished Training')

At Epoch 1: Loss = 8.221381 , Acc = 8,9601
Epoch completed in 1m 4s
At Epoch 2: Loss = 8.886128 , Acc = 8,9699
Epoch completed in 1m 3s
At Epoch 3: Loss = 8.855918 , Acc = 8,9724
Epoch completed in 1m 4s

So, yeah this actually consumes a significant amount of time. You can see pretty much it
consumes of almost over 1 minute 4 second which is close to a more than a minute over
there. However, the starting accuracy is really large; you just start down with an accuracy
of 96 percent. Now, that is great right, because I just solved down all the examples and
that my 0 at epoch whatever it was it is 96 percent; keep one thing in mind, in the first
example where I was doing an update over the whole epoch. So, that is where I was
randomly guessing before I made any updates over here. Here, at the end of my first
epoch it is already has been updated by 60000 times, at the end of my second epochs it is
basically 1, 20,000 times that the whole thing is has been updated.

At the end of third epoch it is 1, 80,000 times that it is getting updated and that means,
that the number of times it is seeing and it is trying to update itself is much larger. So, if
you take the example from the first case where we had just trained it over 10 epochs and
there were updates just for 10 times over there, you train it down for 60000 you would
inherently get down an accuracy which matches down about 96 percent, quite easily with

without much of it.

So, this is a place where you will have to actually now start to think of syncing and
tuning around to play with it as to how they mix and match and work. On one side while
just trying to do one update per epoch is not a great idea because you will have to run

more number of epochs, the other one is trying to do a batch update which takes almost



the same time as doing one update per epoch whereas, in the in the batch update case you
actually reach down a much higher accuracy much faster. The other one which is a
instance based object or per sample, this is where you would possibly be reaching down
the highest accuracy at the shortest possible epoch number. The time consumed per

epoch is going to be significantly large and that is really problematic.
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plt.ylabel('Testing Accuracy')

print(‘Finished Training')

At Epoch 1: Loss = 8.2213B1 , Acc = 8,9601
Epoch completed in 1m 4s
At Epoch 2: Loss = 8.986128 , Acc = 8,9699
Epoch completed in 1m 3s
At Epoch 3: Loss = 8.855918 , Acc = 8,9724
Epoch completed in 1m 4s
At Epoch 4: Loss = 8.8406B1 , Acc = 8,9753
Epoch completed in 1m 4s
At Epoch 5: Loss = 8.931271 , Acc = 8,9736
Epoch completed in 1m 4s

If you can think of sparing that amount of time it is well and good, but for most of us that
is that is not a practical feasible solution and for that perspective we do understand that
actually trying to have a batch update rule is a much practical approach to do it and
which is what is followed on. In fact, the way that data loader was written the reason
why we were loading out in batches and trying to do, is everything is guided because this
learning rule itself is much more better and comprehensive. So, it is a good trade off
between trying to reach down your saturation accuracy to the amount of time you take to
reach down that accuracy per epoch. So, if you look into it that what is the total number

of seconds I have spent in order to come down to say 96 percent of accuracy.

So, over here this is going to be somewhat like 1 minute 4 second is when I come down
to a 96 percent of an accuracy. As compared to this batch update where I was able to
come down to 96.7 percent of accuracy within just the fourth epoch and that is like 2
second per epoch. So, it is basically 8 seconds is my total time taken down in order to

come down to the same accuracy as versus | minute of time to come down to an



accuracy which is closer to that in this first case and that is a significant advantage of
trying to use a batch update and why we would be sticking down to that. Since, I have
kept it running for 10 epochs you just have to wait over it whereas, if you look into this
accuracy facts over there you see that after some point of time it just does not increase to

that much of a level.

So, the amount of time I am spending down in going down from 96 percent of an
accuracy to say 97 percent of an accuracy is close to about more than is about 7 minutes
let us say 1 minute 4 second into 6 is close to over 7 minutes whereas, it does not
actually pay off. In 7 minutes you are being able to just gain one percent of accuracy as
compared to the earlier case in a batch update where like just within 2 seconds you have
been able to see a change in accuracy of 3 percent. Now, that is a significant change
which comes down and this initial curve, that in the first 2 seconds itself you reached out
about 92 percent and that compared to here where it took you almost a minute to each up

to 96 percent.

So, these are simple tricks around the point of why we would be using one and not the
other way of doing it down and what can be a better way of doing and the other point is
that within a batch update you definitely save out on a lot of your RAM space. You might
not have enough of space to load the whole dataset, but again just loading one single
sample at a time is also not a feasible. You are going to spend a lot of time just doing a
hardware 10 operation, you are going to fetch down something from your hard drive and

then copy it down.

So, there is a significant amount of DMA transfer operations which is involved over
there and since typically your DMA buses. So, from your knowledge of computer
organizations and operating systems you do understand that your DMA bus is almost like
10 times or even 20 times slower than your CPU block and the bus between your CPU to
your RAM and that is going to guide it down. Whereas, you can do a batch update or say
a significant number of throughput updates over there and with a batch loader this is
where you basically come down to a advantageous position as versus doing it with just

one single sample at a point of time.
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At Epoch 1: Loss = 8.221381 , Acc = 8,9601
Epoch completed in 1m 4s
At Epoch 2: Loss = 8.886128 , Acc = 8.9690
Epoch completed in 1m 3s
At Epoch 3: Loss = 8.855918 , Acc = 8.974
Epoch completed in 1m 4s
At Epoch 4: Loss = 8.840681 , Acc = 8,9753
Epoch completed in 1m 4s
At Epoch 5: Loss = 8.831271 , Acc = 8.9736
Epoch completed in 1m 4s
At Epoch &: Loss = 8.826186!, Acc = 8,9785
Epoch completed in 1m 4s
At Epoch 7: Loss = 8.820758 , Acc = 8,9717
Epoch completed in 1m 4s
At Epoch 8: Loss = 8.820662 , Acc = 8,9772
Epoch completed in 1m 4s

In[]:

So, if you look down, somewhere around 8 epoch which is almost close to 9 minutes that
we have been speaking around, it is somewhere at 1.7 percent of a change which is there
and then that is not something which is appreciated in any way for your own practical
purposes. So, let us just wait for some more time and we can actually see the same kind

of a curve coming.
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total += labels.size(g)

outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
correct += (predicted == labels).sum()

Plotacc.append(correct/float(total))

epochTimeEnd = time.time()-start

print('At Epoch {:.8f}: Loss = {:.6f} , Acc = {:.4f}'.format(epoch+1,runningl
print('Epoch completed in {:.8f}m {:.0f}s'.format{epochTimeEnd // 68, epochTi

fig = plt.figure()
plt.plot(range(epoch+l),trainLoss, 'r-',label="Cross Entropy Loss')
plt.legend(loc="best")
plt.xlabel('Epochs’)
plt.ylabel{'Training Loss')

fig = plt.figure()

However, if there is one crazy thing over here instead of trying to plot down what we

plot over here is basically the loss at every epoch. Now, the whole point over here is that



instead of trying to plot the loss at every epoch, now let us try to plot the loss after every
single sample as it keeps on going. You would see a very crazy curve like it will come
down as a jittery curve and in certain times you would see that it rises up then comes
down then rises up and comes down. But, however, the average trend over that particular
line is something which will follow down. Now, compare that with learning curve for
every batch itself you would see that that every batch one has a much smoother decrease
as it goes down. So, I am almost done with my ninth epoch and if you wait for some

more time you can actually see the tenth epoch going out.

Now, look into one point; this is what is we call as a point of inflection. This is where
you see that the test accuracy over there has actually started decreasing. Now, this is a
point in classical learning theory is what we call that the network has started to memorize

whatever has been given down to it is training example.

So, it is getting into something which is called as an over fitting problem. It is very good,
it is reducing down the error if you look into these losses. The loss has decreased because
this loss was computed on the training dataset itself; whereas, this accuracy is decreasing
instead of increasing. If your loss was decreasing then your accuracy should be
increasing whereas, here do you see that your accuracy had decreased over here as
compared to this one. It suddenly again increases over, here it does increase, but this is a
point of inflection which is now, starting to happen over here and that is something

called as an over fitting problem.

So, later on, in the other lectures we will be going down to how to identify these points

of inflection.
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And, when the over fitting is happening and what you can do to actually cut down these

issues of any over fitting happening.
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You can typically see like around these epochs is when it started these inflection. And,
from our experiences we know that once it is at this point and beyond everything it is
actually trying to memorize the network in a big way. It is just trying to pull itself out,
though of that practice, but this is something which happens if you are training it over a

longer period of epochs.



So, with that we have done some basic understandings of the different kind of learning
rules from your global updates per epoch to batch updates to single sample based updates
and the pros and cons around with that. So, with then, stay tuned until the next lecture

comes up.

Thanks.



