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So, welcome. We had done till the previous few lectures on using down different kinds of

methods, and we learned on how to train autoencoders. And the simple way of doing that

was we while we did one part of it which was just for representation learning, there was

another part of it which we were extending to multilayer perceptrons as for classification

purpose. And over there you did learn about using something called as a cost function

and that cost function which we are using was just a two norm or the Euclidean distance

of the predicted to the actual one.

Now, standing on top of that I did speak out that we will be covering down more details

about other types of cost functions as well.  And that just trying to find out the mean

square error or the Euclidean norm is not the only way of deducing out what are the

different kind of cost functions which when used. And you have it varying as well. So,

you will be using some of them for classification, some of them for trying to solve a

regression problem.

So, today’s class stands on top of the stuff which we have done. And we will be getting

into  what  is  called  as  what  are  called  as  cost  functions.  And then  through that  the

subsequent next lecture in which we would be covering down using the different kind of

cost functions for solving the same kind of a problem. And typically for the case of an

auto encoder what we will be doing in the lab is that for representation learning where it

just tries to encode the patch itself we will be using a mean square error or an l 2 norm.

And then eventually for the part of classification, we will be using a different kind of a

cost function may be a binary cross-entropy or any of one of those. So, without much of

detail  let  us  get  into  what  we are  going  to  do  in  terms  of  this  topic  called  as  cost

functions.



(Refer Slide Time: 02:04)

So, typically cost functions are grouped down into two broad families and that is called

as either they are the ones which are used for classification or the other ones are used for

regression kind of problem.

(Refer Slide Time: 02:18)

So, typically this is what it comes down to. Now, when you go to the fact that you have a

cost function which is a classification cost function; now, what typically happens with a

classification  cost  function  is  that  you would  be  solving  a  classification  problem or

where you would need to associate a class label to a given kind of an image. So, if I have



an say for the mnist kind of a problem where you had handwritten digits of zero to nine

and you just had to identify which digit it was. So, this is a typical case of a ten class

classification problem and that is something where different kind of cost functions which

are actually of the nature of classification are the ones which will be used.

Now, the other one is what is called as a regression problem as well.  And regression

problem is typically the kind of auto encoder problem for representation learning which

we are doing in which you would try to predict out what is the state of a variable on the

other  side  of  it.  And then those  kind of  predictions  can  be done typically  you with

regressions or even a restoration problem such as . So, and all of them have different

properties which you would like to see and that is what guides down the cost functions in

its own way.

(Refer Slide Time: 03:24)

So, for classification the typical ones which are used are called as so the most common

one is binary cross-entropy the just successively following is the negative log-likelihood

that is a margin loss and the soft margin-based loss. Now, we will be getting into what is

the mathematical form for each of them as well as what are the different attributes which

come out when you are going to use each of these cost functions. And that will more or

less guide like what is the kind of application scenario in which you will be using a

particular kind of a cost function. So, it may not always necessarily be so that using any

cost function you will be coming down to your best performance over there. So, not just



guaranteeing that you will be getting none the best accuracy over there; now the cost

function does have a significant role to play in terms of identifying what you are trying

to solve.

(Refer Slide Time: 04:14)

So, let us get into the first part of it. So, the first one is what is called as a binary cross-

entropy. And now how it is defined is typically of this one, where you have a weighing

factor associated with the class of a law with loss of for a particular class. So, say that I

am looking at so this is typically where you take a k class classification problem. So, for

my mnist this K is equal to capital K is equal to 10, because I just have ten classes of

digits 0 to 9 available to me. Now, w k will be a weight associated with loss of a class.

And what that typically means is that if I want to make classification for one of the

classes more stronger which is say I want to very accurately classify my zeroes whereas,

I can have some sort of error if I am trying to classify between the other classes. So,

maybe if something is written down as 7 and that gets wrongly classified as 2, it is not so

erroneous, but if I am wrongly classifying that as a 0 then it is highly erroneous.

If that is the case then what I can do is and these are very dependent on the kind of

problem you are dealing with. Typically for digit recognition it is where it is an ISO

equivalence problem which means that all classes are equally important and then you

would try to put down equal weight to each of these classes. But then it may be in a case

say I want to detect and identify if a particular image given down is cancerous or it is not



cancerous.  Now, in  those  cases  its  really  risky  to  say  a  cancerous  patient  as  non-

cancerous. Whereas, if you have a non-cancerous patient you say that as cancerous, there

is  a  mental  dilemma  associated  with  the  patient  obviously.  But  then  telling  a  non-

cancerous patient to be cancerous in some way does not as such hamper the life of the

patient,  because  anyways  they  would  be  going  down through  successive  more  tests

where it would be identified that this patient is not cancerous. But in case that the patient

is cancerous and you classified them as non-cancerous they are not going to go through

any subsequent tests and just move out. So, I mean that is a life taking point over there.

So, each class is not necessarily always equivocal or equally valued, but then certain

classes might be having more importance than the other classes. So, in that case of a

thing is where you would be putting making use of this factor w over here.

Now,  t  k  is  basically  the  binary  label  associated  with  the  target  class.  Now,  you

remember that in the classification problems which we were solving till now and the way

we were defining  the  target  output  vectors  over  there,  so  it  was  always  called  as  a

number of classes cross one. And it was a one hot vector which means that that particular

class which belongs which is  the class level  of that  sample which is  being used for

classification. So, which is being used for training or say whenever you are classifying,

so that particular element of the tensor is what is going to remain as one everything else

is going to go as 0.

So, in my minist classification problem if I have 0 to 9 classes, and the digit given down

over there is say the number 9. So, it means that all the previous 9 elements over there

will be 0, and the 10th element is going to have a class level of 1. If the digit given down

is 0, then the first element of that tensor of that 10 cross 1 tensor is going to be one rest

everything is going to be 0, so that is what is t k over here and the subscript k is for each

of these classes.

Now, on the other side is a classification probability score from the neural network. Now,

if you look over here for t k this is just a value of 0 or 1, you do not have a floating point

value going down over there. So, there is no continuous value in the range of 0 to 1, but

it  is  either  0 or 1.  Whereas,  when you are classifying or whatever  is  coming as the

predicted output of the neural network that can have any value in the range of 0 to 1.

Now, keep this  in  mind that  binary  cross-entropy necessitates  that  the  output  of  the

neuron coming down over here lies in a continuous range of 0 to 1 and that would also



mandate that you use an appropriate transfer function over there. So, the non-linearity

which I impose over that needs to be in a range of 0 to 1.

Now, from your previous classes or non-linearities when we were dealing down with

simple perceptron model, you can definitely recall that sigmoid is one of those kind of a

functions which will impose a value of 0 to 1. So, if input to a sigmoid tends towards

minus infinity, it puts a value to 0; if it tends towards plus infinity it scales up and puts it

to a value of 1, but it  will  never exceed the value of 1 or go below the value of 0.

Whereas, if you have a tan hyperbolic then it ranges in the value of minus 1 to plus 1 and

that is not something which you can use for binary cross-entropy. Neither can you use a

rectified linear unit or Raleigh kind of a function which will come down eventually when

we start studying about convolutional neural networks, they are more famous. So, this

kind of  transfer  functions  are  necessarily  very  important  over  here  and you need to

choose a particular one which does impose your output to also stay within this range.

Now, what typically you do over here is if you look into one pair of this cost over there.

So, t k and is basically what is the probability that the class k exists. So, and then one

minus t k is the probability that the class k does not exist and log of 1 minus is the

probability that it was not predicted. So, you take a marginal product of these two and

then you weight  it  down by that  particular  class  over there.  So,  in  any case if  your

prediction is wrong, then you would be seeing that it comes down to 0, 1 and vice versa

is what happens over here and then because on by virtue of this log, and this o k value

over here. So, o k is in the range of 0 to 1. So, 1 minus o k will also be in the range of 0

to 1 and that makes that this output of this log is basically a negative number on both the

cases. And in order to get this cost function as a positive one you have this balancing

minus over here which balances out the total contribution coming down from this whole

thing.

So, this is a typical function which is very commonly used for classification problems

and in fact, in the next lecture, where we will be doing more on coding aspects of it. So,

we will start down with the auto encoder like architecture using a mean squared error

cost function over there. But eventually when we do a transfer or just transfer it out,

transfer the weights which have been learned for representation part over there to create

a multi layer perceptron, we will be changing over to use this kind of a cost function

which is called as binary cross-entropy. And see what is the change happens. And in fact,



there would be changes in terms of the dynamic range of the errors which come down,

because here you can see that the dynamic range of the error is anyways limited in the

range of 0 to 1 and then it cannot cross that, so that is like really an interesting factor

which will come to play.

(Refer Slide Time: 11:05)

So, the next part of it is what is called as a negative log-likelihood error. So, how this

goes  is  that  you  have  also  a  weight  over  here,  because  it  goes  down by  the  same

argument that this weight is pretty much dependent on which particular class. So, if you

need to have one particular class very perfectly classified then you will be putting down

your a very high weight to that one or if all of the classes whichever you want to classify

are of the same kind of a contribution then you put down the equivocal weight or once

basically for all of them. So, y k over here is basically the log of the response of the

neural network. So, what it means is that in the earlier case say you took the sigmoid

which was in the range of 0 to 1.

So, what we do over here is you put down a logarithm after that and that scales down this

output value. Now, if your output from the neural network before the log was in the

range of 0 to 1, you know that definitely taking a logarithm of some kind either to a base

e that is a natural logarithm or base 2 or any of your base 10 even would work. So, that

would scale it down the maximum value which is 1 a log of 1 is always 0; whereas, the

any value which is close to 0 that is something which tends towards minus infinity with



your log scale. So, this is where it puts it down and this function is typically what is

called as a negative log-likelihood. So, the negative term is what comes down over here,

and this  part  is  just  the  log-likelihood for  each of  them.  And this  is  a  very straight

forward function which can also be used.

(Refer Slide Time: 12:39)

The next part of it is what is called as a margin loss. So, in margin loss typically what

you would do is that you try to find out the margin between your so it is like you have

your output of the neural network which can be in the range of minus 1 to plus 1. So,

here it is pretty different because here you see that its no more than 0 1 0 1 kind of a

vector, but it is basically minus 1 and plus 1. So, whichever class exists that is what is

associated with plus 1; whichever class does not exist is what is associated with minus 1.

So, your target which is the actual class label for a particular sample that will be either

minus 1 or plus 1, whereas the output of the neural network over here can be in the range

of minus 1 to plus 1.

Now, typically for using this kind of a cost function of margin loss what you would be

making use is  that  the non-linearity  has  to  be definitely  tan hyperbolic  non-linearity

which can generate in the range of minus 1 and plus 1. If you use say a sigmoid kind of a

non-linearity that is not going to solve your problem in any way. So, in order to keep it

between the range of minus 1 and plus 1 you will have to use down a tan hyperbolic non-

linearity over here.



Now, what we do over here is that you take a product of these two o k and t k. Now, say

that both of them are minus 1 over here. So, this total product over there is what leads

down to plus 1. Now, you have another factor, which is called as a margin criteria. Now,

the default for it is always one this margin is basically the amount of tolerance you would

allow down. So, if both of them are minus 1 and this is also one, this part becomes

basically a 0. Now, maximum of that is what is called on as a 0 and that means, that so

this interior part within the summation is what goes down as 0, so your classification is

also 0.

Let us look at the other part of it which is for one of these classes where your output was

1 and the target was also 1 in that case also you will be getting down the same thing

coming down. Whereas, if you have the opposing criteria, so your target was actually

plus 1; whereas, your output came down as minus 1. So, in that what you get down is

that this factor over here becomes down to negative quantity say this becomes minus 1.

So, minus of minus 1 is what makes it plus 1. So, you have a m which is 1 plus 1 and that

is a value which is higher than 0, and greater value which goes down over here.

Now, this max part over here is what limits that if in case this difference over here m

minus o k t k this is the value which is lesser than 0 under certain condition then the error

will be made down to 0 itself. So, that is sort of the minimum value of error which we

will be getting down at any given point of time. And for all other cases it is a different

one.

Now, typically this is a function which you would be using when your non-linearities

which you are going to deal with are in the order of minus 1 to plus 1. And whereas,

again choosing the non-linearities is also always not in your hand, because you would

choose a non-linearity in order to match down the kind of a response you are looking at.

So, if your say images which we are using they somehow come down in the range of

some minus value to a plus value and this  is not so complicated say you take down

synthetic aperture radar images or you take down your ultrasound images or take any of

these MR signals. So, these are the ones where they do have a negative to positive range

over there, and this is a sign number system in which your data exists over there.

Now, whenever you have a sign number system in which the data exists and say you

normalize it gets normalized in the range of minus 1 to plus 1 where 0 corresponds to



basically that some sort of a normalization factor and a standardization factor. So, zero

typically  say  for  our  c  t,  0  is  basically  the  hounds  of  the  Hounsfield  unit  which  is

associated with water now for sorry not with water so with air. Now, if you are an m r

that will be the Hounsfield unit which is associated with water and this is what is used

for calibrating your system over there.

So, in those kind of image families where you do get a negative to positive, you would

try to put down at non-linearity as well which is ranging in the range of negative to

positive.  And in that case your margin function also has to be different,  because you

cannot use a binary cross-entropy which would not allow you to have minus 1 to plus 1.

It needs you to have between 0 to 1. You cannot use a negative log-likelihood which also

has a similar problem. So, this kind of a cost function does come to a huge respite in

those kind of scenarios.

(Refer Slide Time: 17:10)

So, now standing on top of that the next one is what is called as a soft margin loss. And

in a soft margin loss, what you typically do is that while you have your o k and t k over

here and they are in the range of minus 1 to plus 1. So, what you would do is you take

another log of 1 plus of this number. Now, typically remember in case of your earlier

margin loss, so it was a max of zero comma m minus which was your margin minus that

net factor over there and then you made it that it is going in some sort of steps and then

the minimum value which comes down as 0. Whereas, if you look at this soft margin loss



over here, what it typically does is it  raises this total  product over here the marginal

product to a n e power of something and then adds a 1.

Now, what that would necessitate  is that if I do not have this one over here, so this

becomes e power of minus o k t k and then this value over there. So, you have a log of

that factor. So, this basically becomes of o k t k summation of o k t k and that will be a

value of zero either 1 or minus 1 or plus 1 that is what its typically going to be nothing

else. Now, here by doing this when you are going to scale it down in that particular

range. So, if I have my this minus o k t k if both of them are negatives then this becomes

a positive quantity e power of 1. So, this becomes log of 1 plus e power of 1, so that is a

number which is greater than one that is clearly a number which is greater than 0 as well

as a number which is greater than 1 as well. Now, these kind of functions, so this log

soft. So, this is sorry the soft margin loss over here which you have. So, the soft margin

loss basically allows you to give a very continuous kind of a function.

(Refer Slide Time: 18:50)

Now if you look into the margin loss in the earlier case which we had done, you also

know that for any kind of a loss function you need to have its derivative.  Now, this

derivative does have a discontinuity because of the max function coming down over

here. Whereas, if you look into the soft margin loss function, this is a very continuous

function does not typically have a discontinuity and then you have a perfectly derivative

computed out. Now, so computing our derivatives is what I would rather leave to you



and we will be having exercises the weekly assessment exercises where you would be

getting down questions want to find out these derivatives as well. But this is a this is sort

of an experience and a learning which you will just be gaining down by taking down

these functions and we are not solving out derivatives because that is clearly much on the

prerequisite side of it  that you know how to find out derivatives of certain functions

falling down its chain rule.

(Refer Slide Time: 19:44)

Now, that was all we had to speak with classification related cost functions. The next one

is what is called as a cost functions, which are related to regressions. And here there are

basically three very distinct category of cost function which we will be using so two of

them are basically which are geometric in nature L 1 loss, and the mean squared error or

the L 2 loss, and KL divergences which is probabilistic in nature.

So, you remember that clearly the earlier ones which we were doing on classification.

So,  your  binary  cross-entropy was  an  information  theoretic  because  you were  using

cross-entropy. Negative log-likelihood was a probabilistic function, which you are using.

The margin loss and the soft margin loss these two were against structural cost functions

because they were just trying to look into your geometry properties like there is a fixed

point and how far are you from that point in terms of your cost space. So, there are these

different  kinds  of  distance  metric  families  based  on  which  these  cost  functions  get

derived. So, we follow the same thing for a regression problem as well.
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So, an L 1 or an absolute loss function is what is something defined of this particular

form. Now, what you can see is that whatever is the target output and whatever is the

output of predicted output of the neural network, you are just going to take an absolute of

the difference between them. So, this absolute of the difference will mandate that this

value stays in the range of in a in a positive number over there.  And then no issues

occurred on. So, there is a slight error, so this minus should not have been there. This is

just one by k times of this average of this one.

Now, one thing clearly you can note down is that if this difference is negative or this

difference is positive in both the cases you will be getting a positive number and this will

come down to  the  minimum value  which  is  0  and that  is  how this  cost  function  is

bounded in itself. That it is the lesser the least value which you can get down is zero and

the higher value can be anything. Now, the good part about this one is that in the earlier

cases on classification you did see that it was mandating that whatever you predict out

your o ks they need to be in the range of 0 to 1 or minus 1 to plus 1 strictly within a

bounded range. You do not have an open range over there.

So, if you are taking down say images and I want to predict  down the full  scale of

dynamic range of the image then I do not get that option. So, if I put on some input of

200, and 0 to 255 and 8-bit integer, the output side cannot be 0 to 255, but the output will

be mapped down to 0 to 1 range or say minus 1 to plus 1. Whereas, in case of regressions



that is not something which we are generally interested at and this kind of a cost function

does allow me to have flexibility on choosing what can be my range of outputs on which

I would like to play.

The other one which is called as a mean square error loss or the l two loss. So, what it

does is it takes a square of this amplitude over that. So, this is also going to be in the

range of 0 to 1, 0 a greater than 0 basically not necessarily in the range of 0 to 1 and this

minus will not be that this is just a error in putting it down. So, what this would mandate

is  that  you will  always be having a positive loss coming down out  of these kind of

functions  totally. And this  is  also an unbounded one and that  is  what  makes  it  very

interesting for your regression problems in it is in own way.

(Refer Slide Time: 22:54)

Now, the other  one is  what is  called  as a Kullback-Leibler  divergence,  and this  is  a

information theoretic loss function which comes down. So, you have your t k which is

the target response which comes out, and o k which is the output from the neural network

and this is again a multi hot vector or all your outputs over there will be mapped down.

So, your k can be a particular location which you are taking down on your predicted

class over there, or it can be even a class label if you would like to take it in that way.

And here one thing which generally mandates is that o k and t k also need to be in the

range of 0 to 1 though it  is not very strictly imposed in terms of this  equation.  But

coming down from the fact of Kullback-Leibler diverges actually being an information



theoretic one we would prefer that we still treat o k and t k in terms of probabilities or in

the range of 0 to 1. So, this typically goes down into that form and does it.

There are other ones as well. So, you can take down Jensen-Shannon divergence loss as

well and what that would mean is that here while the probability which were weighing

down with the mutual information. So, t k by o k is going to give you the basically the

mutual information content over there, and then you weigh it down by t k which is your

target response. Now, if you would like to weight by o k, you can still do it. So, you put

down o k over here put down o k here and a t k over here, but that does not give you a

totally balanced one.

So, if you want to get down a balanced one, you can take a sum average of that and that

is what is called as a junction channel. So, we will have down exercises where we deal

more about different kinds of these statistical divergence based and information theoretic

measures for costs when you are trying to solve a regression problem and that sort of

brings us to the end of it and we have the take-home message.

(Refer Slide Time: 24:36)

So, if you want to get more into cost functions and learn more about the details and the

suggestion is to refer back to the textbook on deep learning by Goodfellow, Courville

and Bengio that has a consolidated description of different cost functions, their ranges

and the cases where you would be applying them. So, with that we come to an end for

today’s class.



Thank you.


