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Welcome. So, today we would be doing our examples on autoencoder and continuing

down from where we had done. So, in the earlier one where we were doing it with a first

and the most easiest one which is called as mnist. So, the whole idea was that can we

make neural networks which are fully connected and help autoencoders in order to learn

a  representations  and  use  that  auto  encoder  learnt  representations  in  order  to  do

classification of handwritten digits and here the problem which comes down is going a

bit  more  than  that  because  in  case  of  your  handwritten  digits  you  did  see  that  the

background  was  black  and  on  that  the  digit  part  whatever  pixels  were  where  the

handwriting was present over that was what was the (Refer Time 00:56) white.

So, it was more of like a black versus white pixels which and need to be classified and

then the tessellation of these points or the arrangement of these points will help me in

order to understand what kind of a digit is written down over there send and this is where

you are dealing kind of with a binary data because the data is either 0 or a value of 255. 

There is not much of a gray level transition which happens over there. Now what we

want to do more of try now doing down is that can we have models and can this auto

encoders also learn to identify between grayscale data and for that the first one which we

will take down is with a modified version of a another dataset which is called as fashion

mnist.

So, here it has images which are of the same size of that of a mnist. So, it is 28 cross 28

pixel images these are all grayscale. So, 0 to 255 full scale values which are available

over there and these are small images of clothing items or apparels. So, there are 10

classes of apparels which are present over there and keeping in sync with the concept of

mnist. So, in fashion mnist we have 60,000 examples for training and 10,000 examples

for testing and you have 10 different object categories in which you need to classify. So,

let us get started with what we will do. Since, I have already explained about 2 different

kinds of training an autoencoder some one of them was called as the end to end training



in which you create the complete autoencoder say I have my input layer I have the first

hidden layer then the second hidden layer.

Then on my decoder side I should have one hidden one more hidden layer and then my

reconstruction output over there.  And then I trained this  end to end in order to do a

representation  learning  then  chop  off  the  decoder  part  with  a  hidden  layer  and  the

mapping to the output and then I just have something remaining from my input to the

first hidden layer to the second hidden layer the third is chopped off or the decoder side

first hidden layer is chopped off.

Now, from here I connect it down to a fully connected network neural too. So, this is the

first version which is called as an end to end pre training of a auto encoder and then we

will use that for MLP initialization in it. So, there is also another version which we have

on the example which is called as 13 b. So, on the 13 b example you would be seeing a

layer wise pre training of an autoencoder. So, where that was the other way of doing it so

that I start with one layer at a time train down the first layer, then train the second layer,

then I would be connecting it down to a fully connected layer over there.

So,  let  us get  down to it.  The first  part  is  just  my header  for fetching down all  the

libraries over there. Let us run the first part of it. And this header is more or less constant

for all what I am using. So, there is not much to actually do.

(Refer Slide Time: 03:40)



Around over there the data set over here is a bit different. So, you need, but the good

thing is that it is available within the torch vision data set itself and you can directly get

down get it down. It is called as fashion mnist and now what we do over there is that we

just integrate it down multiple of these paths over there. Initially this is the part which

was to download all the data that is what I was running down earlier and then once I

have the data downloaded then I was again using the path over there and then doing a

match loader with it completely.

Now, here we have everything taken down together such that in one single shot I have

my training data available to me via the train loader pointer. So, similarly I can do the

same thing to get my testing data as well loaded down via the test loader pointer and

likewise that I have set my download equal to true. If you are running this for the first

time  it  will  start  to  download  the  whole  data  this  might  take  a  bit  of  time,  but  not

significant if you have a good amount of bandwidth available over there. 

A couple  of  minutes  and then  it  downloads  and  you are  good to  go  and once  it  is

downloaded you can just keep on reusing. The only point is that please do not delete the

folder from where the data is placed because every time it is going to look into this one

as per this code or if you copy this somewhere then create a fmnist folder or whatever

folder  where  you  are  just  putting  on  your  zip  files  or  tarball  images  of  what  got

downloaded. Then just put down the exact path over there and that should be solving

down your problem.

So,  here we have loaded out  the data  the next  is  to  look into  the sample.  So,  I  did

mention  that  we have 60,000 samples  in  my training  set  and 10,000 samples  in  my

testing set and that is what comes down over there now from there let us get into the next

part.



(Refer Slide Time: 05:24)

Which is my sample image from the data set. 

(Refer Slide Time: 05:30).

So, let us try to look into one of these images. This is one image which just comes up for 

me it looks like a shoe most likely.



(Refer Slide Time: 05:47)

And then if you see it is 28 cross 28 and a perfect grayscale image which is coming

down to me.

Now, from there doing a check on the GPU availability or not and here is where I start

defining my autoencoder. So, remember that in a autoencoder there were 2 parts of it.

One was an encoder another was a decoder. So, here my encoder (Refer Time 05:55) on

784 neurons or 28 cross 28 to 100 neurons that is the first hidden layer from 100 neurons

over  here after  a  ReLU or  Rectified  Linear  Unit  transformation  it  connects  down to

another 100 neurons the second hidden layer over there. Now, similarly my decoder side

should have 100 neurons connected to 100 neurons which will map down my like output

of the second hidden layer onto something which is conformal and if you vocal to my

first hidden layer itself.

Now, once it maps it down I connect them 100 neurons to 784 neurons which goes down

to  produce  an  output  of  the  same  size  as  that  of  the  input  itself.  So,  this  is  my

initialization  and  my  definition  for  my  autoencoder  over  there.  Now, with  that  my

forward pass what I need to do is that I would do a forward pass over the encoder then

again a forward pass over the decoder and just return that result over there. This is pretty

much how my network gets defined. So, let us just define the network and get it running.

So, my network gets defined over there the next part is that.



(Refer Slide Time: 07:00)

 I put start down by training my network.

Now, remember over here. So, we are doing a autoencoder mechanism over there. So,

what I would technically be doing is that all my outputs are supposed to be the same as.

(Refer Slide Time: 07:16)

My input. So, while this is the very generalized form of trainer which has been written

down over there though point which we make sure that my labels and my inputs is the

same. So, label is technically the term which we would quite often be referring to while

saying what is the output coming down from a neuron and because most of the problems



are classification problems. That is the classification label which comes out, but here

since I am doing a regression learning problem what I would do is that about I can would

put  on  my  input  equal  to  label  while  my  training  and  then  my  cost  functions

appropriately get evaluated over there.

(Refer Slide Time: 07:52)

So, going through the rest of it is that you zero down the gradients over there and then

map down your outputs and inputs over there which gets a forward pass through the

model and use a criteria. So, the criterion over here which is defined a bit later on as we

had seen in earlier examples here we would be using mean square error MSE criteria

because this is just trying to reconstruct itself over there. 

Now, from there we go on the learning update rules over there. So, learning update rule

is just going to use down my optimizer and a step function over there and we are going

to make use of the standard stochastic gradient descent as we have been doing with the

other one’s as well. Now, that I keep on doing. So, the final part is that I get down my

errors and then I can keep on printing them.



(Refer Slide Time: 08:37)

Now, just to see it out. Let us just execute. So, this part gets executed for me.

(Refer Slide Time: 08:48)

And then I have my function for training and this network which gets defined. Now, once

and remember that this is just for the auto encoder part we have not yet come into the

multilayer perceptron.  So, given that I need to initialize my model and then start  the

training. So, this initialization over here which I do is basically take the whole.



(Refer Slide Time: 09:05)

Autoencoder model and then see it is randomly initialized. So, one part is just print down

and check out whether this exactly what I wanted to see and. You see that this is the one

which I wanted to define right 784 neurons going to 100 from 100 to another 100 at the

second hidden layer.

(Refer Slide Time: 09:18)

So, on the decoder side I have a sequential I have a symmetric way of decoding. So,

from 100 it goes to 100 and then from there it goes to 784. The weights are again copied

down. This is just to check down what is the amount of difference in the weights which



comes down before training and after training. So, from there let us get into the criterion

part. So, why criteria for cost function is the Mean Square Error MSE? And the optimizer

I am using is SGD with learning rate of 0.5 and a momentum of 0.9. This is quite similar

to the one’s which we had done in the earlier case with standard mnist as well and then I

called on my trainer module and this trainer module function is what was written down

over here my reconstruction model or my just an autoencoder model. 

Let us run this one and here it is head down to 2. It takes a bit of time. I mean I can

change and make it pretty much 5. You cannot run it down for ten’s, fifty’s, hundred’s.

But, what we have experienced is more of it goes down to 30 and then whatever it starts

reproducing is quite conformal. So, going beyond 30 epochs does not bring any major

change over that.  However, the only major issue is that when we start doing it takes

about 3 seconds in order.

(Refer Slide Time: 10:46)

To complete each epoch, so that is for the sake of experiments over here within the class

we are just keeping it quite lower to just 5 epochs.

(Refer Slide Time: 11:04)



So,  15  seconds  and this  is  where  you see  that  it  has  come down now it  there  is  a

substantial possibility of it to go down even further and keep on decreasing. But I would

leave it up to you. So, just make it run down beyond just 5 epochs. Going down to 30

epochs  you  will  get  down  much  slower  error  coming  down.  So,  this  was  just  the

reconstruction error in terms of your Mean Square Error MSE taken out. Now, let us look

into.

(Refer Slide Time: 11:18)

Like how good did the network learn to reconstruct the data it itself.



So, if this is the original image which was given to the network this is something what

the reconstructed it the foreign factor of it remains almost the same except for that. There

are a lot.

(Refer Slide Time: 11:14)

Of these holes which get created over here and there is a bit of blurring and smearing

which happens to the original form of the shoe which was there in the original. Now, you

keep on training it over a longer period of time you can put down denoising criteria over

there and they can pretty much get rid of these small dots coming down and. So, we will

be  coming  to  them  in  a  bit  later  on  when  we  start  doing  things  called  as  stacked

denoising autoencoders and there we will be bringing in the concept in terms of fully

connected networks and you can just integrate them and keep on running.



 (Refer Slide Time: 12:15).

So, here I would just like to look into the weights of the kernel. So, we do a copy of the

weights after  the whole training process and this is where I  just  write down a small

routine in order to display my initial weights, my train weights and then what are the

difference of the weights. Now, if you look into the trained weights as well. So, they too

appear as if not learning.

(Refer Slide Time: 12:28)

Down any distinct pattern as such and quite similar to the noisy nature as in the initial

weights.



So, but whereas, if you look into the weight difference over then you would see that a

substantial number of weights have actually been updated keep on running it for a longer

duration of time you will definitely see down more updates coming down. Now, this is

where comes the interesting part because here we need to get rid of the decoder part over

there and have just the representation learning part available to me and then use this

representation learning part as an initialization to my multilayer perceptron. So, I need to

connect down my final classification layers over there.

(Refer Slide Time: 13:05)

So, here what I do is that we would try to define another small network which consists of

100 neurons to just 10 neurons and then append this module on to the initial part over

there. So, what I technically do is that I find down just list down all the children on this

classifier module n dot sequential this number of children which gets listed over there.



(Refer Slide Time: 13:39)

If  you  remember  let  us  get  back  into  the  original  definition  over  there.  So,  my

autoencoder over here was defined something which has 2 modules, the first level of the

tree. Within encoder module, I have a sequential module and within the sequential model

this is how things are in. Then within the decoder, I have a similar kind of a module. So,

on my first level of the tree if I try to find out my 2 children then they are encoder and

decoder.

Now, if I remove my decoder module then I am just left with my encoder module over

here and that is pretty much what has been done over here say remove that point.



(Refer Slide Time: 14:04)

And then just add down my next module. So, from after my encoder I just have this

sequential connection and instead of using ReLU which was used just for the purpose of

reconstruction we are going to make use of LogSoftmax for classification purpose then

just it is just a matter of copying down the weights and keeping them. So, that later on

we can as well visualize them.

(Refer Slide Time: 14:30)

And this is what the network now looks like. So, your initial encoder part remains the

same the weights are also preserved over there because I did not play around with the



weights  or  reinitialize  them  and  then  I  added  down  another  sequential  part  which

connects  100 neurons to  10 neurons over  there  and then has  a  LogSoftmax of  non-

linearity present.

(Refer Slide Time: 14:54).

 

So, once done we define the trainer function over here. So, this is quite same except for

the fact that my inputs and labels are not different.

(Refer Slide Time: 15:00)

So, I will use down labels which are actual class labels coming down over there. My

criterion function will actually be changing over there as well. And I will be.



(Refer Slide Time: 15:14)

Using a different learning rate in order to do, this is just your trainer for the new network

which you defined over there and here when I come down to my actual part of what

functions to use and how to start training down.

So,  I  am going to  make use of negative  log likelihood criterion  over  there and that

corresponds to the final non-linear transformation which was LogSoftmax which is used

which is compliant to the dynamic range and the requirements for negative log likelihood

to come into  play and then  I  set  down my stochastic  gradient  descent,  but  here my

learning rate is pretty different because earlier I was just using 0.5 here I am using a 0.01

that  is  to  keep  down  with  the  dynamic  range  of  the  errors  which  I  get  down  my

momentum still remains at the same and I choose to do it with 10 epochs. I can even

reduce this and for the sake of time. I would just put down 5 epochs over here.

So, let us run this one and then you see pretty much it takes.



(Refer Slide Time: 16:04)

Almost the same amount of time 3 seconds per epoch. So, over 5 epoch it should be done

within 15 seconds. And you can now look into the accuracy which keeps on coming

down over  this.  So,  as  the  error  keeps  on going down your accuracy also  keeps  on

increasing.

(Refer Slide Time: 16:25).

So, this is my training loss curve. This is no more the mean square error, but this.



(Refer Slide Time: 16:39)

Is a negative log likelihood error which comes down and here is my accuracy. So, this

accuracy is not in percentage, but does absolute scale of 0 to 1. You can pretty much see

that  it  is close to 80 percent accuracy just  by training down in 5 epochs and that is

amazing because the point is that when it was not trained it started down around with the

50 percent  accuracy which is just  a random chance that anything it  just classifies as

anything else and from there it  from a 50 percent  accuracy going down to about 80

percent accuracy is not that bad if it just a few minutes.

So,  it  is  not  always  that  your  deep neural  networks  for  solving  your  problems  will

actually  take  a  long  amount  of  time  it  does  not  and we are  not  even  using  a  very

powerful GPU as such. It is a very standard desktop great gaming GPU with just 2 GB of

RAM which is available for us to use. So, here we do the performance evaluation for the

network. So, we evaluate pv write down the function in order to find out what is the total

testing error which comes down. 

So, what it is supposed to do over here is that it will get down and load all the images

which comes down on your testing data and from there it will feed forward each of these

test images onto your network and eventually calculate whether the accuracy has been

whether it has been correctly predicted or not now in the training case you did.



(Refer Slide Time: 17:50)

See that it was closed to 80 percent and in test it comes down to almost 82.4 percent of

accuracy which given the fact that is not a bad because none of these testing examples

are what the network had earlier seen in anyways. And let us get into what happened

down to the weights after all of this training go down.

(Refer Slide Time: 18:09)

So, after my fine tuning pitches when I have this multilayer perceptron coming into it

and modifying everything, my weights are still working out because this was at the end

of  the  first  feature  representation  learning  going  down to  it  and  then  at  the  end  of



refinement with a classification coming this is what happened down as I change and

there have been a significant amount of change you would see that they are getting down

more  smoother  and  smoother.  Run them down for  more  number  of  epochs  not  just

restrict  them  to  5  epochs,  but  say  30  epoch  you  would  start  getting  out  beautiful

emergent patterns coming which can represent this data in a much better way.

(Refer Slide Time: 18:48)

So, here we try to look into the weights of the classifier. So, this is what the classifier

initial weights which were randomly. So, this is the last layer which we added down from

100 to just 10 neurons over there. So, this is what it was initially looking like this is after

the training over there and these are the weights which got updated at the magnitude. So,

this is one of the versions which works out and the end to end pre training mont. The

next one which we do is a 13b and what this does is that instead of doing an end to end

we try to look into layer wise pre training or the second approach of doing it.



(Refer Slide Time: 19:22)

So, going down with the flow over there, this is my header which just works out fine.

(Refer Slide Time: 19:28)

Then I have my data set loader which also works out fine and.



(Refer Slide Time: 19:32)

So, these are all standalone independent codes and we made it a point that instead of

juggling letting you juggle between copying down which snippet and pasting it  over

there and then run down the whole scratch we have written down complete versions of it

and which are provided for your cues you can download each notebook and each is a self

sufficient exercise with the complete module written down over there.

So, that you do not face a problem for your initial trials and learning exercises. So, we

take down.

(Refer Slide Time: 20:00)



And it comes down to the same image itself. It because we just did not randomly fetched.

We fetched out the first instance of the image from there. So, run that down and here we

come down to the definition over here. Now for my autoencoder class in a. So, layer

wise pre training the whole idea was that you train one layer at a time. So, if I have 2

hidden layers of 100 neurons, my first job is I will train down my first hidden layer of

100 neurons and then I would go down to.

(Refer Slide Time: 20:31)

My second one, this is how I define my encoder and decoder. So, the and first encoder

unit takes in 784 neurons goes to 100 and then from 100 it reconstructs the 784 neurons

one second.

Now, that this is defined. So, we will be defining our whole network. Here the input and

output is going to be this still the same and this is what comes down. So, if I run and

execute my trainer function then I can actually.



(Refer Slide Time: 20:59)

Look into my network get it transported onto a GPU. So, this is what it looks like and

copied down the weights in order to visualize it out now subsequent to that I have my

standard  MSELoss  function  is  SGD as  an  optimizer  with  the  same  momentum and

learning rates as I was doing and then I just train it for a few epochs. So, I change it

down and make it 5 epochs and I just keep on training.

(Refer Slide Time: 21:28)

So, the course which will be available on GitHub may have some variations from what is

present over there in terms of this number of epochs and arguments they are pretty much



commented and I am showing it to you as to which points to be changed over there. So,

just play around with them we might put down deliberately 30 epochs over there. So, that

you run initially for 30 epochs and see.

(Refer Slide Time: 21:47)

So, this is what comes down with just one single hidden neuron. Now, here I would like

to see just that one single hidden layer what is the kind of reconstruction which I get

down.

(Refer Slide Time: 21:59)



Now, the next part is this is when my first bunch of hidden layer connections are already

trained now the objective is that I would remove my connection from 100 neurons to 784

neurons and rather replace that one with another 100 over there. So, I can look into this

as splitting up the decoder encoder and decoder as in the earlier case. So, I have 784 to

100. Now, I will bring in a match of 100 to 100. This gets my second hidden layer. From

my  second  hidden  layer  to  the  earlier  hidden  layer,  there  will  be  another  neuron

connection which has to be established.

That is what I am doing pretty much over here. First, what I am doing is on the encoder

model I am adding a module. So, this will append itself to the 784 to 100 neurons. So,

after 100 to another 100 in the decoder side I need to redefine this one by saying that first

I will add 100 to 100 and then the rest of the decoder gets added over here. And that is

what I define over here. Now, once we do that and look into the network this is how the

network looks like.

(Refer Slide Time: 23:00)

So, I have 784 to 100, 100 to 100 coming down. It looks a bit different because the

number of pointer reassignment just went up. So, the hierarchy of the tree is also split up.

That is on the code side of it, but as a function it does not make any change which comes

down over there.

Now, that I have this. So, let us run the trainer for this one and here it was just set down

for 2 epoch. So, we will just run it for 2 epochs and then look into what comes out.



(Refer Slide Time: 23:31)

So, this is how the actually. Pretty much since the error is going down you can keep on

training it for even longer duration as well. Here let us look into the reconstruction over

there. As I increase a layer, I mean to a lot of people you might say that the blur has

increased over there. Yes, but then the network has not yet learned completely.

So, you learned on the network over a longer period of time your errors will keep on

decreasing your reconstruction efficacy does definitely increase significantly. Now the

next part is when I need to remove all of these decoders. So, I have my 2 hidden layers

for representational learning perfectly trained I need to remove the decoder unit over

there from.



(Refer Slide Time: 24:09)

My auto encoder, what I do is just in the same way come down to the first level over

there first level of the tree and just remove the last terminal element and then this is what

I am left down with.

So, I remove this part. So, I have 784 to 100 then again the next level 100 to 100. And

then my output  over  here which is  my classifier  gets  100 to 10 features  and then a

LogSoftmax which is happened to it and this is pretty much similar to the network which

we had in the earlier case. Now doing that we have a function for training it which is

pretty similar to what we had earlier.



(Refer Slide Time: 25:36)

So, I am not discussing much in detail about it and then we get into the loss function and

do it. So, well change this epochs and make it to 5 and let us see what comes out over

there. It would take you approximately 3 seconds as we had in the earlier cases as well.

Now please do not be much worried about these warnings I mean this is just with some

syntax errors which keep on creeping in with the change in generation of these libraries

which come up.

(Refer Slide Time: 25:15)

So, it took about roughly 16 seconds in order to train down for 5 epochs and.



(Refer Slide Time: 25:17)

Is the accuracy which we get which is again quite closer to 80 percent as we see now we

would like to even evaluate this network in terms of it is total accuracy and that comes

down to about 0.7295 percent. Now you might have an impression that in the earlier case

when I was doing an end to end pre training it was giving me an 82 percent whereas,

here that I have done a layer by layer pre training I am not getting that high accuracy, but

we need to keep one thing in mind that in none of the cases the whole network was

trained completely and then if  we are able to train it  over the whole duration of the

epochs then it is pretty much possible that it would train down in a real good way and

give you a much better accuracy and that is actually the point over there.

So, with layer wise pre training it does take a bit longer to train, but the convergence

criteria’s and the total performance is much better than what you can expect on with the

end to end pre training though theoretically both of them are supposed to converge on to

the same point,  but then we are speaking in terms of our trainable function and it is

stochastic behaviors which are not necessarily always guaranteed to converge on to the

same point.
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So, if we look into the weights over there, between my encoder weights and after this

fine tuning there are again different kinds of changes which happen and if you look. So,

since we are not yet learning down very fixed kind of patterns over there. Training it over

a longer period will definitely give you a much way of doing.

(Refer Slide Time: 26:42)

So, here interestingly what came out that from your initial weights and if you look into

your trained weights over there has not been any change. That is really something funny

maybe the auto encoder actually learnt out representation. So, well that given any kind of



a random combination or possibly the random combination of weights which came down

over there was something which was actually true to the global minimum point and that

is why this happened, but then do not expect that. This is the same one which keeps on

happening every time over and over again for you all  this is fortunately a good case

which we just found out for the for our exercise over here today.

So, with that we come to an end with the autoencoders and 2 different kinds of auto

encoders. In the next class we will be doing out on colored images using autoencoders

and subsequently. Instead of classifying, the next class is on classifying patches of color

images. The subsequent next lecture will be where you doing a pixel to pixel annotation

or something called as a semantic segmentation using auto encoder. 

So,  there will  be like given an image you go down to any given pixel take a  small

neighborhood around the pixel using that information over there you are going to classify

each pixel location and do a raster scan over the whole image and you are pretty much at

a point when you can say print out the complete image. So, with that stay tuned and

enjoy down more of coding and then the lectures as we keep on going now.

Thanks.


