
Deep Learning for Visual Computing
Prof. Debdoot Sheet

Department of Electrical Engineering
Indian Institute of Technology, Kharagpur

Lecture - 11
Autoencoder for Representation Learning and MLP Initialization

So, good morning and we start with the next week. And so here, we would be getting

started  into  understanding;  what  is  a  first  basic  structure  of  what  is  called  as  an

Autoencoder. And this is the first family of deep neural networks which, on which we

will be starting. So, it builds up on top of what we have done till last week and that was a

multilayer perceptrons.

So, while typically with multilayer perceptrons, what you have learnt and was more of

from a pattern space. And then, eventually there was an extension drawn down as to, if

you have an image directly, then can you feed it down to solve a problem as well and that

is where the deep learning comes to play. So the idea is that, as you cascade a cross the

depth of a perceptron, a multilayer perceptron from one hidden layer to the next hidden

layer to the next hidden layer across it is family of transformation.

So, there will be linear combinations and then an all linear transform function; together

you  would  be  ending  up  learning  down a  lot  of  attributes.  And  this  is  what  would

essentially help you in doing an image to a final classification coming down. So, what I

would start down is today called as Autoencoders for Representation Learning and for

Multilayer Perceptron Initialization. 

So, how this is arranged is, more of like we start with what is defined as an Autoencoder

and till that is that is a very simple name as it goes down; auto means itself and encoder

means a particular network which learns to encode itself. And the way that this encoder

learns to encode itself is something which helps in, helps us into something called as a

Representation Learning. Or this is one of those family of things where you learn to

extract features from the images itself.  So, no more you would be needing down say

heart,  hand coded texture  descriptors  like  local  binary  patterns  or  wavelet  us  or  co-

occurrence matrices, but these networks themself will be learning.



So, they will be adapting them self in order extract features. And that is what is also

called as representation over there.

(Refer Slide Time: 02:16)

So, without much of a delay, let us get started. So, the first part of it is what is called as

an  UNSUPERVISED  PRE-TRAINING.  And  this  is  again  looking  it  down  from  a

classification perspective in total.

(Refer Slide Time: 02:25)

So, a general structure of an Autoencoder is something which looks like this. So, what it

has is, a set of neurons which will give you that input pattern to itself and then another



set of neurons which generates an output pattern. The number of nodes in the output

neuron and the number of nodes in the input side over here,  they are same.  So, the

number of neurons in the input side is equal to the number of neurons in the output side.

And in essence, as you see that input over here is called as p x for all generality and to

keep it very specific to our visual computing perspectives, we will say that p of x is

actually a patch; a patch at a location x.

So, if you have any kind of a coordinate location given say 300 cross 300, 300 comma

300, x equals to 300 and y equal to 300; On that image you can extract a patch of say 3

cross 3 size over there. So, that will include all the 8 neighbors around that particular

pixel at 300 comma 300 location. You can have a 5 cross 5 neighborhood which will

have a more number of pixels over there. You can have, 5 cross 5 will have total 25

pixels over there. So now, if I have a 5 cross 5 which has 25 pixels over there, then each

pixel is what is an input to each of these neurons. And technically, in that case your

number of neurons on input side has to be 25. So, similar the number of neurons on

output side will also be 25 keeping in the same logic.

Now, that you have this input side which is called as p x, the output which generates

from this output side over here is what is called as p hat of x. And p hat of x from our

earlier all the classes which we have done, you have seen that typically you give an input

x over here, you get an output. y and y is basically y hat, which is the predicted value. So

over here, we call this as the predicted value of the patch that is why it is p hat of x. And

for a simple Autoencoder how it would go down is that, you would have an intermediate

layer with the hidden neurons over here, will just 1 layer which will have all the neurons

which are called as the neurons in the first hidden layer.

And then the idea is that, given a patch in the input, it goes through all of these linear

summations,  then  non-linear  transformations.  The  output  again  comes  out  and  goes

through linear summation and non-linear transformations and this output is generated

over here. And the way it is connected down is W 1 is the set of weights which connect

all of these input neurons to the first hidden layer. b 1 is the set of biases which connects.

W 1 dashed, so you have this dashed over here.

So, that is sort of like, the counter of W 1 which connects this hidden layers to these

output neurons over here and similarly your bias also has a counter representation which



is b 1 dashed. And the way it represents is that if this was a transformation, so your

output was given down as y is equal to w times b dot p 1 and your p hat which comes out

from here. So, y is the output of the first hidden layer over here, for the output of the next

one is what comes down as p hat.  And then the whole idea is that,  you have a cost

function which is called as J W which is equal to the l 2 norm of the input minus the

output over there. 

So, whatever is the patch that is a. So, here I am assuming that there is no non-linear

transformation like sigmoid or over here. It is just a linear weighted summation through

which it goes down. And finally, the whole training of this network can be achieved by

doing some sort of a way of minimizing this cost function over here; and that is exactly

what we want to do.

So in the last classes, we have studied about gradient descent which is one of those very

useful methods for optimizing these weights of the network and getting it down to this

particular form which is expected.

(Refer Slide Time: 06:24)

Now from there, where we go is something called as a Supervised Refinement. Because

what you have studied till now is, where your inputs get represented in a way in to your

intermediate  layer  such that  your output  can be reconstructed  from that  intermediate

layer things. But then, reconstruction is not what we are looking at. So, there are multiple

uses. So, some down the line we will be looking at, what happens if we are not looking at



a classification, but can we use this kind of an Autoencoder for other purposes. So, we

will  be coming down across with denoising autoencoders in order to find out a very

practical  use  of  them  as  well  that,  for  the  perspective  that  here  we  are  looking  at

classification as problem and that is the first getting started from where we are doing. So,

the next part is to go a Supervisory Refinement.

(Refer Slide Time: 07:11)

So here, typically the task is something like this, that given that I have a patch, so I take

this patch over here which is red marked. And then I pass it through one Autoencoder,

the second autoencoder. And next, I pass it down through a logistic regression or say a

simple sigmoid decision rule over here. Now once it goes down through this decision

rule, it gives me an output for a probability of a patch. 

So, here how it is encoded is that, I have a, I consider a patch which is centered at a

given pixel and then I do a raster scan which is I linearly translate across all the pixels

over here. For any kind of a given pixel, I take a neighborhood; I feed it to my like

subsequent 2 Autoencoders over here hierarchically connected. Then the output of the

second Autoencoder is what is fed to the logistic regression. And then for that particular

pixel, I get down a probability value and from there I can do run a classification will as

to it belongs to which class.

So, it can be either the black class, the red, the blue, the green or a this yellow class;

anyhow, one of these 4 classes to which would it belong. And that is the color over here



is basically which is the maximum class in the probability which comes. So, this is a

result of that r max which is pasted over here. So, that is how you keep on sliding this

window over the whole net, over the whole image and accordingly you will be able to

get down these probability values and class labels obtained across the whole image. Now

given that, this is what you would be doing, let us go into the math part over there.

(Refer Slide Time: 08:39)

So, what I call this output is something as a variable t. So, this t is basically a 1 hot

vector. Or in simple terms, if have a 5 class classification problem, for each pixel I will

get down 5 entries of which 4 entries will be 0 and one of these entries is going to be 1 

The entry which is going be, so it is a 5 cross 1 matrix basically. t is a 5 cross 1 matrix

for our example which we are considering. And output whichever is 1 is the particular

class which is represented over here. And this t is often called as the target tensor or for

classification purposes. So, here what I do is, you remember that we had 2 Autoencoders

connected, so this w 1 b 1 is for the first Autoencoder. The output of that one is what is

generated with this f NL or the non-linear transformation.

Now, that goes as input to the second Autoencoder that is why you have this feed over

here or dot product with the second order encoder weights w 2 and b 2. The input to the

first autoencoder is what is this patch p and we also put down some a random number

called as r. Now the significance of this random number is immense, but it is not within

the scope of this first lecture where we would be studying this random number over here.



So, as of now you can even assume this random number to be 0. So, for our lab tutorial

examples, we will be taking this random number as 0 and then we would be proceeding

and eventually you would see how a particular distributed random number does come

into a important play. And that will also make us realize a very important aspect about

machine  learning  is  that  randomness  is  a  very  important  factor. And in  fact,  that  is

something which will help you avoid in a lot of cases getting locked into local minimas.

So, here we take the same thing.

So, now that it keeps on going in this final layer the w 3 is what is connect the second

autoencoder to the logistics regression. And this is what has to be trained. Now what we

would do initially is that, initially we train for w 1 and w 2 in an autoencoder mode. Now

once this  w 1 and w 2 is trained in autoencoder  mode so, in that  kind of a training

process,  you never  the class  labels  coming down and these are  what  are  the feature

extraction layers which are trained perfectly. Now when that feeds on to this w 3 this is

what has to trained into a classification mode, w 3 and b 3. For here, when we do this

weight refinement concept over here, what we do is w 1 and w 2 are already trained, they

will not be changing drastically, but there would be minor shift.

So, may be 1 percent or 2 percent of the values in w 1 and w 2 would be changing. A

majority of these values in w 3 which were randomly initialized at the start of it, will

definitely be changing. And together is what you get down this output. And then, the

final cost function over here is what is defined accordingly.

So, this is, omega m is basically my ground truth and t m is what I am getting down over

here and m is basically the m th patch or the m th sample for which I am making a

decision over here. So, while t is a 1 hot vector, omega is also a 1 hot vector and this is

what is used for my Weight Refinement.



(Refer Slide Time: 11:46)

Now, let us get into some of these PRACTICAL EXAMPLES. And again given the fact

that I come down from the field of medical image analyzers, lot of these examples I

would be taking down including the one which I had shown down are from medicines.

So, the earlier one is what is called as optical coherence tomography and we would be

doing down more within.

(Refer Slide Time: 12:04)

But,  let  us  start  with  the  very  simple  one,  which  is  from  a  classical  paper  on

HANDWRITTEN DIGIT RECOGNITION. And this is by Vincent Pascal. And so this



was in the journal of machine learning research in 2010. And that is called as Stacked

denoising autoencoders, and how do learn useful representations in a deep network with

local denoising criterion.

So, while we will be discussing bit more on this local denoising criteria at a later on

stage, but before that the most important part is that if we have an autoencoder, then can

we use it for even digit recognition kind of problem.

(Refer Slide Time: 12:42)

So, what this challenge is, this is one of the practical problems we will be solving in the

lab class in the subsequent lectures as well. So, the idea is that, you have this handwritten

digits over here. So, you see this is a one this is 5, this is 8, 6, 5, 7, 3, 8 and this looks

like a 6 and this is a 1. So, this also looks like a 6, but again it is a bit occluded over here.

Now the objective of this challenge is that, say you have these small patches, so this is

one patch or one single image given down and this is what is present within the patch.

Now you have to classify what is written down.

So, I have basically 10 digits which are 0 to 9. So over here, my target classification is

going to be a 10 class classification. And accordingly, my t vector or my target vector

that is going to be a 1 hot vector of size 10 cross 1 right; I mean this is pretty intuitive

from here. Now what we need to do is, we need to understand a bit more about this one.

So, this is what is called as the MNIST data and it is from the handwritten digit.



So,  MNIST is  from  the  modified  version  of  the  NIST or  the  National  Institute  of

Standards And Technology. So, this is from an agency based in the US. And they provide

out  this  data  set  for doing these standardized  classification tests.  So,  the training set

consists of 60000 samples. And they are distributed equally across all the 10 types of

digits. The test set over there consists of 10000 samples. So, each class of digit has 10,

has 1000 examples basically over there. So, the idea is that the samples which you see on

the test set  are not present in the training set and vice versa and that would make it

independent of each other.

Each of these image patches which you have, where you have this digit written down,

that is of a size 28 cross 28 pixels. Each is a 8 bit gray valued pixel container. So, they

are in the range of 0 to 255, but they are all binary images; it means that if it is white

then that pixel is 255. 

Where ever it is gray that pixel is 0 that is how it is represented. So, it is technically a

binary image, but they do not store it into a binary form for some of their storage reasons

is in order to make it compatible and easily viewable across most viewer which do not

support a binary, but would support an 8 bit value. So, they store it just in a 8 bit form.

So, we have download links, but it is easy to Google down and come down. So in the lab

class, we will be showing down how to get started with. And these are very standard for

most of the getting started examples and you would see them as the first few examples

which come up.



(Refer Slide Time: 15:26)

So, once you train down that  network and everything,  what comes down is  a pretty

interesting part over there.

So, one was like, if you look into this weights of the first layer, then you need to make a

sense of what is happening over there. Now, since this paper was on basically denoising,

sorry denoising autoencoders and they added down local noise as local  perturbations

over there to see what are the effects. So, what happened was that with addition of noise

sit was ending up learning better features. 

Now  these  patches  which  you  see  over  here,  these  are  patches  these  are  basically

rectangular form of representing the weights which connect down the input layer to the

first hidden layer and that is the for the first autoencoder. So, if you, so basically you

have a 28 cross 28 pixels over there. So that means that from there if I connect down to

my say 4, I remembered something like 400 neurons are present on the first hidden layer.

So, that would mean that,  there are basically  400 weights which connect  down each

neuron to the first neuron of the hidden layer. Then there are 400 weights which will

connect down all inputs to the second neuron.

So, this is the first neuron, this is the second neuron and this is arranged as a collection of

20 cross 20 weights over there which will beat 400 such links which are connected. And

if you count over here, there are basically 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 so, this is just

12 cross 12 representation which they have given. But, since this is 12 cross 12. So, this



would mean that my input side of, my hidden layer over there will be 144 in that case.

And so, inside each of this is what is sized as the same as that patch over there. So, the

patch size was 28 cross 28. So, this is a 28 cross 28 patch which I have. And then, these

are the weights which connect down. 

So, this is a link between 1 input pixel to a given a layer in the hidden neuron. Now these

we will do a bit of more complicated mathematics in the subsequent classes where we

would learn down relations between these appearance weights to a correlation function

itself, but as of now what you see is, that they represent some sort of wavelet us. So,

these mimic down your Gabor wavelet us to a certain extent and this is what where it

comes down in terms of learning it.

(Refer Slide Time: 17:49)

So, there are more interesting facts over here which are like, how do they learn different

aspect with different degree of noise. So if you see, initially if there is no noise added

down, it get appears not to learn down anything whereas, if you have 50 percent noise

added down then you would see that what 2 different neurons are learning are pretty

different  in  appearance  from each other,  while  this  looks like  some sort  of  a  Gabor

wavelet which is shifted and up, this looks like a Laplacian wavelet which comes down

over here. So, these are interesting facts that it can learn down from data itself.



(Refer Slide Time: 18:20)

Now from there, we can get into another interesting problem which they have shown

about  appearance  model  variations.  So,  the idea was that,  we had images  where the

number was written upright and given, but then if you apply some degree of twist and

turn around with the number, then can the machine still learn to recognize or say that the

background is not black at all, but the background is noisy itself.

Then if the background is textured, then if we have some sort of a rotation on a textured

background this is where you have a convex hull imposed on top of the number and

given down, this is where you have a patch occluding, this convex hull appears as a

patch and that occludes on top of something.



(Refer Slide Time: 19:00)

And then together using all of these examples,  this is what they have found out. So,

SDAE is the version which they were working down. And these are the Performance

Metrics in terms of errors.

So, if you look in terms of errors, you would see that with the basic MNIST, they have

one of the lowest a very low error, but not necessarily the lowest error. The good thing is

that, as you keep on increasing all of these weird transformations on top of it, you would

see that the lowest error is something which you would be getting down consistently

with this denoising autoencoder. And that is something which brings us to the fact that,

these autoencoders are basically a very good family of learning down representations and

that is how they are able to overcome most of this challenges.



(Refer Slide Time: 19:43)

The next, I would be taking down is on ORGAN DETECTION IN 4D MRI.

(Refer Slide Time: 19:49)

So, we will  be doing this  kind of an exercise a bit  later  on,  but  this  is  just  a fancy

example. So, here the idea was that, you had 3 different data sets on which the point was

to identify pixels corresponding to the tissue. But what was marked and given was these

kind of pounding polygons, free hand bounding polygons which represent each different

kind of a tissue.



(Refer Slide Time: 20:11)

Now, what the authors had done is that, they had constructed a very densely connected

autoencoder and this autoencoder was what was operating on the volume space. So, this

was no more 2D pixel space. So, not a patch which consists of a say 28 cross 28 sized

over there. But since it is in 3D, because there is a x dimension, y dimension and z

dimension over there. So, you end to take a volume over there, a sub volume on which it

is connected.

So, the number of neurons over here is still larger. So, given the fact that, if you have a 5

cross 5, you have 25 neurons which exist in normal 2D space. In 3D space, you would

make an if few vocal translations to a 5 cross 5 cross 5 and that would make it 125

neurons. Now that is bigger of 1 order. So, you increase 1 number it order, it increases in

the cube of that number basically.



(Refer Slide Time: 21:02)

Now, using that what ended up was that, they try to visualize this first layers and what

came out was that these look something like edge detectors basically.

If you remember your sobel kernels, then these appear like sobel kernels, but a rotated

version, then shifted versions of them. And accordingly, using just one single layer of

representation learning, you could a very decent, an accurate prediction of the different

tissue classes present in an MR image itself. So, that is the power of deep learning and

where it goes down that, you just need to make a network, find a way of packing the data

and training it out efficiently. And the rest of the features and what to do and how to

associate a classification rule with a particular kind of a feature is what gets done into

went within the system itself.



(Refer Slide Time: 21:52)

So, this is my personal work from 2015 and we will be doing this as one of the exercises

as well, is on tissue characterization.

(Refer Slide Time: 21:57)

So, the exact network which I was showing is over here. So, what you have is, we take

down patches of 36 cross 36 pixels and each of these are gray valued patches. You have 2

autoencoders, one of them with 400 neurons, the next one with 100 neurons and then you

have a target with the 5 outputs. So, there is a part of sparsity, we will be learning that



subsequently as well. And including all of this, you get down an performance accuracy

which looks something like this which is typically a very high accuracy as such.

(Refer Slide Time: 22:29)

So, the idea was that, you have a patch coming down and you feed it down to your input

neurons, just linearize. So, you had 36 cross 36, you make 36 square number of neurons

over here. You have your bias added down, then you have the first hidden layer which

had 400 neurons, then the second hidden layer which has 100 neurons and from there

you have 5 neurons on the output side of it. And then based on whichever is coming as a

1 hot, output this color is associated over there.



(Refer Slide Time: 22:55)

Now, we wanted to actually look into what the network was ending up learning. So, this

is  the  interesting  fact  over  there.  So,  if  you  arrange  these  weights  of  the  first,  the

connection between the new, these input neurons to the first hidden layer, then this is

what the arrangement looks like.

Now, each of this is 1, 1 of these. So, say for this first neuron over here, this is all the

connections from all the input neurons to the first neuron of the hidden layer, this is for

the second neuron of the hidden layer, this is for the third neuron of the hidden layer.

Now if you look at these patches, since these are the some sort of weights and how what

they have learned. 

Now you would see that, a lot of these weights look very similar. In fact, majority of

them are pretty similar and this particular weight over here is an offbeat because this is

sort of an inverted version of the weight over here or the inverted version of majority of

the weights. Some of these weights like these do not learn anything. 

Some of these learn to do a DC shift kind of stuff; some of these learn to do some weird

kind of an edge detection. Now, together with this one, what is interesting is that most of

these weights being very similar. This sort of represents a very redundant system. Now

given that we should be looking at the Weights which connect down the first hidden layer

to the second hidden layer itself.



(Refer Slide Time: 24:03)

And that is where comes a more interesting fact so the, you see this is basically one of 

these patches. So, there are it is a 100 neurons. So, you have basically 10 cross 10 array.

So, this boundary somehow how is not appearing quiet perfect over here. And then each

of this is a 20 cross 20 point because you have 200 neurons connecting it over here. Now

you would see that most of these regions which are gray are basically 0 valued and the

ones which are white are very high value, high positive valued. The ones which are black

spots are high negative value. 

Now what comes down is, since you did see in the earlier one that a lot of these weights

were very similar so that means that, you can use any one of those representations and

you do not need to use all of them. So, and that was one of the reasons why most of these

weights over here came down as 0. And this is what is typically called as a very sparsely

represented system because most of the values in the width matrix is 0 and very few of

them are non 0 values.

We will get into more details in the subsequent ones and these are another interesting fact

within Deep Neural Networks. You need to understand is that these networks are capable

of learning the ample number of representations which are needed and if it will never be

over fitting on to a representation in some way.



(Refer Slide Time: 25:21)

Next is another of earlier paper which is on RETINAL VESSEL SEGMENTATION, is in

2015.

(Refer Slide Time: 25:28)

So, the idea was to get down these kind of vascular maps and this is what we came

down. So, this was again, take down fundus image and you would take a small patch

around over here put it down into an autoencoder and train it.



(Refer Slide Time: 25:40)

So, this is what we had done. But the idea was that, you do not put a logistics regression

or a final decision over there,  but you use these autoencoders  for just  representation

learnings such that you can cascade them to a random forest and that can be used for a

decision making purpose. So, this is another way of doing this in a hybrid model, where

your final  classifier  fire may not necessarily be a neuron. So, you can use this  deep

neural network for just feature extraction and then subsequently padded down with a

standard classifier in order to do full classification.

(Refer Slide Time: 26:14)



So, here what we did was that, we extracted down few bunch of patches and then we use

these for training. So, these are the sort of patches which got extracted. And the first

layer  weights are what visualized and came down. And these were something which

were getting tuned on to these patches itself if you look. So, these are sort of like a Gabor

wavelet, but a very first order. So, a very wide ordered Gabor wavelet that your special

span is very low. 

Now if you look at the second layer, interestingly over here this is no more a sparse

system;  this  is  like  a  very  densely  mapped  out  system  because  these  were  very

directional filters which it got learnt out and that were based on the diversity of the data.

So, it is not necessary that a very dirty or a very noisy looking image as in those ocds,

they would be always hitting down to a very densely connected neuron. 

Because  you did  realize  that  although  it  was  appearing  very  noisy, but  most  of  the

features when you compress it down, they are just very few unique features whereas a

very clean looking image like this retinal images over here, they rather exhibit larger

amount of diversity in terms of it is representation space and that is what in influences

this to be a non sparse system during classification as well. So, these are few interesting

observations which we do. And as we go down through subsequent ones we will come to

know more about. So, we will be discussing more in details about how to unwrap and

unroll a neural network, unbox the whole thing and see what it has learned and how it is

performing.



(Refer Slide Time: 27:41)

So, together this was a final performance which comes out. And if you see that, these

very thin vessels which are like rarely visible even on the image to a non-expert, these

are what got tracked down very accurately in the final classification. And so these are

interesting facts about representation learning that they can learn very complex patterns

over a very diverse region, given that you have ample amount training data provided to

this one.

(Refer Slide Time: 28:12)



So finally, coming to the end is the that what you can do is you can read down through

this interesting paper on deep learning which appeared in nature.  It is a consolidated

summary, very good magazine like reading article over there. For understanding more

about representation learning and we will be doing a few exercises from based on this

particular paper as well which is, you can look into this particular one on representation

learning  by  Bengio,  Courville  and  Vincent  and  transaction  on  pattern  analysis  and

machine intelligence in 2013 from the special issue. 

So, that makes us come to an end of this one. And in the subsequent classes, we would

actually be doing more of tutorial based understanding of how to code it down and then

unrolling the model to understand the math of how it is going inside. So, with that stay

tuned.

Thanks.


