
Microprocessors and Microcontrollers
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture - 09
8085 Microprocessors (Contd.)

(Refer Slide Time: 00:18)

For 8085 processors, if we try to look into the machine language so, it is an 8-bit

microprocessor as we have said previously. So, this is basically so, the word side is 8 bit.

So, that number of different combinations that it can understand these 2 power 8 that is

256. So, you can have at most 256 different instructions with eight-bit word size. Out of

that 8085 uses only 246 different bit patterns. So, remaining 10 patterns are not used at

all to form it is instruction set, and these 246 patterns. So, they define all together at 74

instructions.

So, when I say 74 instruction like add is an instruction, subtract is an instruction, move is

an instruction, load is an instruction, like that. And depending upon the operand of the

instruction the instructions may change. Like if I have got say 10 different registers in

my processor, say R 1 to R 10. So, add R 1 comma R 2 so that the R 1 gets the content of

R 1 and R some of R 1 and R 2 is different from the instruction at R 3 comma R 4, where

3 gets the content of R 3 and R 4, sum of the sum of R 3 and R 4.

So, that way these 2 are taken as different instructions. So, if we consider that way then

there can be 246 different patterns, and that correspond to actually 74 different

instructions. And it is very difficult to enter the bit patterns correctly. So, they are usually

entered in a hexadecimal format instead of binary format. Like suppose in if you look

into this microprocessor kits that are available for the development kits that are available.

So, they are normally there are 2 ways in which you can load your program into that kit,

one is by means of having some upload facility from some computer. So, that way the

values may be uploaded directly into the ram of that processor of that kit. Or many times

the kits they have got a hexadecimal hexadecimal keyboard on which is the. Numbers 0

to f they are given. And you can type in the values that you want to entered like, and they

are entered in a hexadecimal format.

For example, if you are if you consider this particular bit combination like 0 0 1 1 1 1 0

0. So, this is this is actually the instruction that corresponds to the, that is the actually

corresponding to the instruction which tells the processor to increment the number in the

register called accumulator. There is a special register called accumulator in 8085. And

this particular bit combination 0 0 1 1 1 1 0 0, if it is executed. So, it is telling the

processor to implement the content of that accumulator by 1.

So, instead of entering 0 0 1 1 1 1 0 0 as a binary bit pattern; so if you are entering the

value through hexadecimal keypad, then the value 3 and c they can be entered and the

essentially translates to that. Of course, if you are doing it where are some computer,

then it will happen automatically. So, automatically the values will be loaded there, but

all these uploading tools. So, they have got a got an option which is to list the content of

this uploaded file.

So, there it will show in the hexadecimal format only for the sake of compactness. And

all the manuals and everywhere you will find that they are talking in terms of the

hexadecimal values and not in terms of binary values. Because of the very simple reason

that binary values remembering them or instructing them becomes difficult. And you see

there are only 70, 246 different combinations. So, in older days people almost used to

memorize like, what are those what are the codes for all these instructions. It was not that

difficult like once a person is doing the 8085 programming for some days, it often

becomes almost common to remember the instructions that are used very frequently the

codes for them. So, that way it is it; that was the way it was done.

(Refer Slide Time: 04:44)

Now, while we are writing programs. So, one possibility is that we write the program in

say high level language like c or c plus plus, and then we have got a translator that will

translate it into the machine language of the processor. Now the difficulty is that there are

many scope of unoptimized translation. So, that the translation which are not very

optimized. So, and as you know that the human being so they are the best optimizers.

So, if the a code fragment is reasonably small, and if you are an experienced

programmer, then possibly you can write the best possible program in machine language

or a so, that you can write a program in machine language which will be better than any

other program which is written in c or c plus plus. Because you will be able to calculate

like the time required for executing each and every instruction and things like that as we

will see. So, that way it becomes easier or it becomes better if you write in a machine

language.

But again, writing in machine language the difficulty is that code and all that. So, what is

done an intermediary to these 2 the high level and the machine language is the assembly

language? So, instead of entering instructions is a hexadecimal. So, you can you can do it

using some symbolic codes. So, it is so, and also if the if you are if you if you are given a

set of hexadecimal values. So, it is difficult to understand the meaning of the program.

So, that is the other issue.

So, what is happening is that. So, the companies they have defined some symbolic code

for the instructions. So, these coals codes are called mnemonics. A mnemonic for each

instruction is usually group of letters that suggest the operation to be performed. So, the

based on the move is a mnemonic add is a mnemonic. So, that way it is telling the

operation that we want to perform; so this assembly language program or assembly

language statements. So, they will consist of the mnemonic, and the operand that will be

there or on which that operation will be done.

(Refer Slide Time: 07:05)

So, if we go back to the previous example. Like, this particular bit pattern 0 0 1 1 1 1 0 0.

So, this is 3 c in hexadecimal. So, and it is corresponding mnemonic is INR A. So, INR

is the increment register. So, I N is increment an R it registers increment register A. So, A

is the is a special register that we have in 8085, which is the accumulator. So, increment

register A; and this 3-c value. So, this is called the operation code. That is, it will tell the

processor, what is the operation to be done, and that is why it is called opcode or

operation code and this A. So, this is called the operand, and this this INR is the opcode.

Now so, for example, if you take say this instruction 1 0 this particular bit sequence, 1 0

0 0 0 0 0 0. So, this is 80 in hexadecimal. So, 80 is the mnemonic. So, 80 is the opcode

you can say, and it means that corresponding mnemonic is ADD B. So, ADD B is the

mnemonic, 80 is the opcode.

So, it says that add register B, to what? So, it does not tell anything like that in this

instruction, but implicitly it means that this B value there A value of register B, will be

added to the value of register A. So, A is a special register, which is called accumulator

registered in 8085, and whenever you have got any arithmetic logic operation, then one

of the operand in most of the cases is the accumulator, and also that destination is the

accumulator only. So, when you execute the instruction at B, what it will do it will add

the content of register B with the content of register A, and the value will be stored in

register A. So, that is the final value will be kept it registered a only or the accumulator

only.

(Refer Slide Time: 09:10)

So, it is important to remember that a machine language, and it is associated assembly

language are completely machine dependent. So, like when you are talking about the c

language, a high-level language like c that is machine independent, you can take the

same c program to a number of platforms where the underlying processors are different,

and then you can again compile it there and get it compile program executed. But you

cannot take the same compiled code from one machine to another machine, until and

unless the environments in both the system both the computers are exactly same,

including the processor that we have and particularly the processor that is exactly same.

Otherwise the machine language of one processor is different from the machine language

of another, and assembly language is also different. The assembly language is nothing

but a user stand able version of the machine language; so human understandable version

of the machine language. So, it is going to be different for different processors. So, one

program written in assembly language of processor a will not work on processor b.

So, this is a typical example like Motorola it has got an 8-bit microprocessor called 6800

and 8085 machine language is different from that or 6800. So, is the assembly language a

program written for the 8285 cannot be executed on 6800 and vice versa. So, that is

obvious.

(Refer Slide Time: 10:45)

So, for an for an assembly language program. So, see assembly language is also not

understandable by the processor; so for assembly language program so, we need to

convert it into machine language.

So, how do we do this? So, there can be 2 different ways by which it can be done. So,

previously it used to be done by something called hand assembly. So, as I was telling so,

older designers of 8085 based systems; so they remembered the code off for each and

every instruction and also, if you look into the manual pages of 8085. So, that will tell

you like what are the codes for various instruction. So, first you write down the program

in assembly language, and then look into that chart where it has got for every instruction

the corresponding machine the corresponding machines of instruction format or the

opcode part opcod opcode forms. And using those opcode so, you can convert your

program or it is in 8085 assembly language to the machine language program. So, that is

not very difficult. So, this is done by the hand assembly this process is known as hand

assembly.

So, the programmer translates each assembly language instruction into it is equivalent

hexadecimal code or machine language, and then the hexadecimal code is entered into

the memory. So, this is the way the hand assembly used to be done and naturally this is

error prone like while doing this operation. So, I may be doing some mistake in selecting

the in looking into the proper mnemonic and all, that and there may be a mistake and a

possibility of error is more. And then those, entering that hexadecimal program into the

computer system that becomes another headache so that way it is becoming it is error

prone.

So, the other possibility is that a program if they use a program called assembler. So, this

assembler programs just like the compiler. So, compiler they translate a high-level

language program to machine language. And these assemblers they can convert the

assembly language program to machine language. In fact, if you look into any compiler

so, they will be having one stage called assembler. So, no compiler translates a program

directly to machine language, it converts it into the assembler. And from the assembler

the; it will be converted into machine language.

The reason is very simple like in a computer system if I have got if I support a number of

high level languages, and then individual compilers they can convert to the assembly

level language program for that for that processor. And in the system, I can have a single

assembler, and that single assembler can now convert all these assembly language

programs into machine language. So, there is no point in duplicating the effort of putting

the assembler as a part of all these compilers. So, assembler part is made separate, and

this compiler so, they generate code up to this assembly level up to this assembly level

and from that point onwards assembler takes up and does the thing. So, this way we can

have with there are assemblers that are available there are many assemblers, they can

find they are available and they are used in the assembly process.

(Refer Slide Time: 14:16)

So, next we will go into that these are 8085 microprocessor architecture. So, it is A 8-bit

general purpose microprocessor. So, let us try to understand the meaning 8 bit means. So,

it can it does 8-bit operations at a time. So, most of the operations that it does is on 8-bit

data, and even if it we operates on 16 bit. So, it will be handling them as 8-bit data only it

is a general purpose. So, it is not a special purpose thing.

For example, if you are looking into a say digital signal processor. So, that is dedicated

for signal processing application. So, it is not like that. So, it is a general-purpose

processor and it is a microprocessor. So, it has got the CPU does it? It is actually a CPU

consisting consisting a ALU, then you have got registers and all that. But it does not have

memory and all that. With it is capable of addressing 64 kilo of memory. So, and each is

and it is 8 bit so, whenever it is accessing memory. So, it will be in terms of 8 bits. So,

that way you can say it is 64 kilo byte of memory can be addressed by the processor.

Now, whether the system will have 64 kilobyte or memory or not that depends on the

designer of the system that uses is 8085 as the basic processor. Now if it is not using 64

kilobyte maybe the system has got only 32 kilobyte of memory in it. So, remaining

spaces will be empty, and processor should not generate addresses in that range during

execution of any program in that system.

Anyway so, the basic processor it has got the capability to address 64 kilobyte of

memory. Physically it is a forty-pin chip. So, there are forty pins. And so, this is detailed

pin layouts we will see, 5-volt power supply is required can operate at a clock frequency

of 3 megahertz, and it is upward compatible. That is the previous version 8080 it is

compatible with that in terms of pin layouts.

(Refer Slide Time: 16:24)

So, this diagram is actually a telling as the pin diagram of 8085. So, we have got this Vcc

which is the power supply pin then we have got this x 1 and x 2. So, in which we have to

connect a crystal externally to generate the clock signal. So, this is the frequency

generator. So, this will be connected to this x 1 and x 2. Then we have got some special

lines. So, some of the special lines that we have is as I said that it can address 64 kilobyte

of memory. So, if it is accessing 64 kilobyte of memory, then I need 16 address bit lines

to power 16.

So, you see these lines marked pin number 21 to 28 marked as 8 to A 15. So, these are

the 8 bits. And this pin number 19 to this pin number 12. So, they are actually the other

bits. So, this is AD 0 AD 1 up to AD 7. So, they are they are multiplexed address data

was. So, will understand this multiplex term later, but this this will also provide the

address line. So, address line the address bus is total 16 bit out of out of that this side I

have got 8 bit, and this side I have got the 8 bit.

V ss is the ground, and then they are so, next after address bus. So, we have got the data

bus. So, data bus is also given by these lines. So, AD 0 to AD 7. So, if you just ignore

this later A. So, what you get is D 0 to D 7. So, this is actually the data bus. So, address

and data they have been. So, they are mapped onto same pins. So, address 0 and data 0

they are put on the pin number 12 address 1 and data 1, they are put on pin number 13

etcetera. But the data actually reduces the size of the chip, because you cannot have any

arbitrary sized pin package.

So, after so, this forty-pin package is a standard package; so after that the number of pins

next one I think is 64. So, that way in between you do not have any other option. So, it is

mandatory, that we keep the pin size compatible with the packaging. So, that is there

now apart from this. So, there are some special signals like this, read bar and write bar

which is for the read and write operations. So, they are to be connected. Then there is a

there is there is there are a set of interrupt lines. So, if you want to interrupt the basic

operation of this processor from the outside word you can use this line. So, trap rst 7.5,

6.5, 5.5 intr. So, these lines can be utilized to telling the processor, that something

exceptional has happened in the outside word and it should take care of that.

Some for example, maybe this this line say this rst 7.5 lines is connected to a mouse, and

whenever this mouse is clicked. So, it tells the processor that the user has please dip the

mouse button once. So, that way it can the the microprocessor may do some special

action corresponding to that.

So, we will come to that those things later. Then apart from that we have got this this

ALE signal, this ALE signal is address latch enable. So, that will tell us like when these

that will be useful for separating out this multiplexed address and data bus lines will see

it slowly. Then there is another line which is I O stroke M bar; so I O M bar. So, it is

input output or memory. So, when it is when this processor is connected to some memory

device, it can also be connected in a similar fashion to some I O device.

Now, where it is processor is accessing the accessing outside word it is accessing for

outside word for some data. So, whether the data is from memory or from I O device. So,

if it is from I O device in that case this I O M bar line; so this value will become 1 and if

it is from the memory then this I O M bar line will be equal to 0. So, accordingly we can

design some decoder circuitry by which either the memory chip will get enabled or the I

O devices they will get enabled; so they will. So, we will discuss slowly on all these

concepts.

(Refer Slide Time: 21:06)

So, this diagram gives a cleaner way of understanding like what are the things that we

have. So, we have got this higher order address bus A 8 to A 15 in pins 21 to 28. Address

and data bus so, they are multiplexed. So, this AD 0 through AD 7. So, they are

multiplexed here (Refer Time: 21:27) this; so, this address and data bus. And we have got

this so, your crystal is connected here between pin 1 and 2 pin forty is the plus supply

voltage 5 plus 5-volt pin 20 is the V ss which is the ground line.

Then you can have some interrupts. So, like given by the pin number 6 7 8 9 and 10. So,

they are the interrupt pins. Then you can have some interrupt acknowledge. So, this is

this inta bar line. So, this is pin number 11. So, this is if this comes in conjunction this

pin number 10 intr; so this intr so this when this interrupt is coming. So, this interrupt

acknowledgment pin is activated by the processor. So, when we discuss when we will

discuss on the interrupt. So, we will be talking about this interpreter of acknowledge

pins.

Now so, in my board; so apart from the processor or the microprocessor there can be

many other devices that also need a clock signal; so this clock out pin. So, this is actually

giving the clock signal of the processor to the other components on the board. So, if you

need any device to be driven by the same clock as the microprocessor. So, you can use

this clock outline for that purpose. Similarly, there is a reset pin. So, this reset in bar so,

if this reset in bar. So, this line is made 0; that means, is 8085 operation will be reset and

as a result. So, processor will start operation from the beginning.

So, such some registers in the processor they will get some special values, that in some

sense will mean that the processor is restarting the operation. And some and as similar to

the clock this reset also we may need to give a reset out because when this reset pin is

activated maybe we may have to reset many other devices as well. So, that is the reset-

out pin. So, this reset out will be quick at this signal can be used to reset other devices.

And we have got this SID and SOD; so these 2 lines. So, this is SID stands for serial

input data, and a SOD stands for serial output data.

So, if you are feeding values to this microprocessor from the outside world. So, one

possibility is that you put some I O device connected through this address bus data bus

lines. That is one of one way of doing it. The other way of doing it is you have some

serial you have some mechanism by which you can send the bits serially, and they are

connected to be SID line. So, the bits are coming serially similarly this can serially

output the data through the SOD line. So, if you are satisfied with low speed data

transfer, you can go for the serial communication via this SID and SOD line.

Another important pins that we have this read bar and write bar. So, the this read bar and

write bar. So, they are actually the read control and write control. So, this will tell

whether the processor is trying to read from the outside world or it is trying to write to

the outside world. So, when it is say really trying to read from the memory, then this read

bar line should be made 0 that is it is active. So, it is read bar. So, 0 means it is active.

So, this read bar signal is activated. And if it is trying to write something onto the

memory in that case it is the write bar signal will be activated.

So, instead of memory it will be I O device also, and whether it is I O device or the

memory. So, that is identified by this I O M bar line this I O M bar line. As I have said if

this line is equal to 1; that means, the processor is expecting the value to come from

some I O device, and if this value is 0, then it is expecting the value to come from the

memory. Then these 2 pins S 0 and S 1. So, they actually tell the stage at which the

microprocessor is at this point of time.

So, as you know that this processor executes the instruction by following this is fate

decode execute cycle. So, in those phases this S 0 S 1 pin. So, they will have some

appropriate values. So, by looking into these values for adding from the external world;

so you can understand what the processor is doing now. So, this S 0 S 1 and this I O M

bar read bar right bar this signal so, they tell about the status of the processor. And they

are in general known as the control and status signals, because that talked about the

status of the microprocessor.

(Refer Slide Time: 26:34)

So, if we are looking into the wires that we have in the system. So, that gives rise to

something called system bus. So, this is the wires that connect the memory and the I O

devices to the microprocessor. So, address bus is unidirectional, and it identifies

peripheral and memory locations. So, if we look into this address bus. So, this address

bus you can see the A 8 to A 15 it is going out from the processor. And similarly, here

also this when this multiplexed address data bus acts as address bus, then it is going

outside going out of the processor.

So, this address bus is unidirectional, and it is going to the outside the output from the

processor. And it is used for identifying the memory location from where the value has to

be read or where the value has to be written. Or the peripheral device that has to be

accessed for doing the operation. Then data bus the data bus is bi directional because you

may need to transfer the value from the microprocessor to some memory location or I O

device, or you may have to get the value from the memory location or I O device to the

processor.

So, as a result this data bus is going to be bi directional in nature. And there is control

bus; so they are for synchronization of synchronization signal, timing signal, control

signals etcetera. So they are, actually constituting the control bus. So, the system bus it is

consisting of all those wires, which constitute the address bus, data bus and control bus.

