
Microprocessors and Microcontrollers
Prof. Santanu Chattopadhyay

Department of E and EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 64
8087

(Refer Slide Time: 00:28)

So, next we have got these loads instructions. So, you want to load some byte which is

pointed to by this source indexed register and load that into the accumulated register.

And that for that purpose; we have got this LODSB. So, LODSB instruction what it what

is it doing it is that this DS into 16 plus SI so that memory address location, so it will be

copied into AL register. And then if DF 0, then SI value will be incremented; if DF is 1

then SI value is decremented. So, if this LODSB is having that rep prefix the DP prefix

then these operations will carried on till the CX becomes equal to 0 ok, so that way we

have got this repeat this REP prefix useful for doing that for scanning through a list of

characters a string of characters or loading a string of characters one after the other into

the accumulator and doing some operation there. Similarly, we have got this LODSW.

So, here also it is doing the same operation where it is loading into the AX register the

loc the memory location content pointed to by MA and MA plus 1.

(Refer Slide Time: 01:38)

Then just opposite of LODS, we have got STOS store string. So, this store string again it

is byte or word. So, this is. So, memory address is calculated as ES into 16 plus DS. So,

store STOS. So, these uses the destination index register or DI register because now we

are going to store. So, that is the destination. So, it is taken as ES colon DI, so that is the

ES colon DI will be the destination address and that will be used. So, this STOSB, it will

be copying the content of the registered AL on to this memory address MA E. And if

again the same thing if DF is 0, then DI is incremented; if DF is 1, DI is decremented and

we have got STOSW where this ah word will be stored the ax will be stored in two

successive bytes at MA E and MA E plus 1. So, that way we can have this destinations

this store operation carried out.

(Refer Slide Time: 02:44)

So, there are next category of instructions that we have. So, they are called processor

control instructions like STC set carry. So, it will set the carry flag CF to 1. Then CLC or

clear carry will set will clear the carry flag. Then CMC or say it will be CMC will be

compliment the carry. So, whatever be the complimented value of carry CF

complimented, so that will come to CF. Then set direction flag, so DF is a bit in the into

the PSW register. So, for string operations, so you need to set it and reset it. So, this STD

it will set that direction flag to 1 and clear D, it will reset the direction flag to 0.

Similarly, for the interrupts we can have STI for enabling the interrupts; and we have got

CLI for clearing the interrupts.

Then there is NOP which is no operation, then halt because the so it is halt after interrupt

is set. So, after some time the interrupt will come and it will raise the processor back to

the normal operation, but this halt instruction is there. Then there is a wait instruction, so

this is wait for test pin to be active. So, this is useful when you have got a number of

masters in the system. So, you have so the processor executes an wait instruction and in

the wait instruction it wait still some outside device or outside master sends a signal to

the test pin. And this test pin when it is when the signal comes then the processor will

know that this now it is my time to continue. So, they it will continue with its previous

instruction whatever it was doing.

So, this wait instruction is used for waiting for the test pin to be active. Then we have got

these escape opcode memory registers type of instructions. So, instructions they are

prefixed by this escape. So, this is for passing the instruction to a co processor. So, 8086

has got the feature that it can support co processor for some operations and those if such

that co processors instructions their opcodes if you have, so 8086 will not be able to

understand that. So, if it finds that the there is the escape bit set ok, then the opcode has

got an escape part then it will understand that it is further the co processors, it will just

pass the instruction to the co processor. And there is a lock instruction it will lock the bus

during next instruction.

(Refer Slide Time: 05:20)

So, this control transfer instruction, so they are used for transferring control between

from to a specific dest[ination] destination or target instruction. So, basically the jump

type of instruction from one location, you want to jump to another location or call type of

instruction you want to call a sub program so that way so it is this destination can be a

jump or a call instructions target or it. So, in this control transfer instructions they do not

affect the flags so because they are not doing any arithmetic operation so they do not

affect the flag.

So, the control transfer instructions in 8086, so there is call instruction call can be

registered memory or displacement 16. So, it will be calling a sub routine. So, this call

register so call register so register will have the offset from the from the code segment

register at which this sub routine is loaded and it will be going to that particular address.

So, similarly the call memory so this call memory so memory will have the offset and

then with respect to the CS that memory will be added and it will be jumping to that

particular address.

We have displacement 16 the immediate value immediate displacement can be specified,

and that can be executed in the that can taken as the destination address for call.

Similarly, we have got jump instruction, register memory displacement 8 and

displacement 16. So, you see that there is this displacement 8. So, this is for this relative

jump and rest of the thing they are ah they are they are the normal jump instructions. And

then there is a return instruction to return from the sub routine.

(Refer Slide Time: 07:04)

So, this conditional branch instructions of 8085, so they are they can this branching

branch instruction there are some conditional branch instruction. So, they will check that

the conditional branch instruction can be signed or they can be unsigned. Now, this they

will check flags and if the condition is true then the program control will be transferred

to the new memory location in the same segment by modifying the content of the IP. So,

the IP register content is updated so that it jumps to the next address.

(Refer Slide Time: 07:35)

So, if you try to differentiate between two, so it is like this that in this instructions which

is conditional branch is instructions. So, we have got this JE, jump on e, jump if equal,

then jump are not equal, jump on greater jump on greater or equal jump on less than

jump on less or equal or so. Similarly, we can have this JE is we can have JZ also JE and

JZ they are same, because this is taking for equality. So, it will check the zero flag. So,

JZ will also check the zero flag. Similarly, JNE and JNZ, they are similar, so that way

there are redundancy in the instructions set, but they can be useful. So, the one

programmer may like one class of mnemonics that can be done.

On the other hand, for this conditional unsigned conditional branch instructions so we

have got some of the instructions are different like say this jump on less. So, we have got

jump if below JB. So, sim similarly jump if are not above or equal, they are same as this

JB. So, there are. So, they are cannot be unsigned things. So, they do not check the

signed bit whereas, they actually check the sign bit. So, both of them otherwise they are

same.

(Refer Slide Time: 08:53)

Now, so these are the instructions that will conditional branch instructions that affect the

flags and this is the flags that are affected. So, jump on carries so this if the carry flag is

said then it will go. So,. So, then it for JNC will check the carry flag to be nonzero, so

that way this individual status bits will be checked and the corresponding jump will take

place.

(Refer Slide Time: 09:16)

So, if you just try to compare between this I O port mapping I O port access, then they

can be there are two types of accesses, one is that memory mapped I O, another is I O

mapped I O. So, in case of memory mapped I O, the I O port locations, so they are

accessed as memory locations only. So, the memory address that we have. So, 20-bit

address that 20-bit address is used for pro access the I O device also. The memory the

address decoder it will have some selection line, so that will be fed to this I O device, so

that those devices will get selected when a particular when the desired address is desired

20-bit address is put on to the address bus.

The I O port or peripherals can be treated like memory locations, and all instructions

related to memory can be used for data transfer between I O device and processor. So,

this is the memory map I O operation. So, I O ports are treated memory locations. Data

can be moved from any register to ports and vice versa. Just like you can move between

the memory location and the register, so here also you can do you can use all those

instructions.

So, as a result your the movement of data becomes easier and when memory mapping is

used for I O devices. So, full memory address space cannot be used for addressing

memory, so that is obvious because some of the locations we are reserving for I O device

access. So, we cannot use all the memory locations accessible to the program. So, it is

useful only for small systems where memory requirement is less. So, if you are not using

full one megabyte of memory space, then in your system then possibly you can also put

that I O device pious part of this memory, and so that you do not have to have separate

decoder for the I O access.

So, the processor will execute memory read and write operations for accessing the I O

device and this M by I O bar pin, so that is asserted high because all accesses are

memory access. So, even if you are doing an I O access, so this is basically memory

operation. So, this is this M by I O bar pin, so it set high. On the other hand, we have got

this I O mapped I O type of operation, where we have seen that I O port addressing 8-bit

or 16 bit. So, 8-bit is direct operation, direct addressing; and 16 bit is register indirect

addressing by a some register.

And this the only instruction that we can use in I O mapped I O where feature is in and

out. So, unlike that MOV type of instructions, unrestricted MOV type of instructions

between register and memory locations, so here it is restricted two instructions like in

and out for doing data transfer between I O device and the processor. So, data transfer

takes place only between accumulator and ports, so it cannot be used to transfer between

any set of registers. Whereas, in case of memory mapped I O, you can have data transfer

between register and any register and the I O port.

Full memory space can be used for address addressing memory, because now memory

space is not restricted by this I O devices. So, you do not have to reserve memory

locations for IO. So, it is ah. So, this full memory space can go for I O is suitable for

system that require, large memory capacity. So, if you have got large memory capacity

then that may be full one megabyte is used for the for addressing the for putting memory

into the system.

So, in that case for I O devices, we have we have to separate I O mapped I O. And for

accessing this I O mapped devices, the processor executes I O read or write cycle. So, we

have got this as the execution is like instead of memory read write cycle, it is I O read

write cycle. And those status bits like S 0, S 1, S 2, S 3 those status flags that we have, so

those status flag will indicate that it is doing a different type of access and this I O M bar

line, so i M by I O bar line, so that is asserted low so that is so it is low means it will be it

means that it is accessing some memory location. So, that way this m by I O bar pin, so

that is made low and that is ah.

So, this is the basic difference between memory mapped and I O mapped IO. So, you see

the major point to note is the memory capacity is a is an issue. Second important thing is

a instructions that you can use the in and out here and all you memory movements here

as a second thing second thing. Thirdly the extra hardware that is needed for decoding

this I O addresses that is required for I O mapped I O and not required for the memory

mapped I O. So, otherwise they are same. So, depending upon the application that we

have, so we have to choose between these two mappings.

(Refer Slide Time: 14:21)

So, another the interesting thing that has happened with 8086 is that 8086 when it came

to the market, so previously there was 8085. So, 8085 interface it has got 16 bit address

data bus ok. So, this data bus was also multiplex. So, to all together it was a 16 bit

interface. So, all the on a on a board so on a on a PCB, so the processor was occupying

some pin locations and the bus was only 16 bit. But now if you just take out that 8085

chip and put the 8086 chip, it becomes incomparable hardware device because now you

have got say 20-bit bus so that makes it difficult. So, what this Intel people did is that

they came up with another processor 8088 internally which is similar to 8086, but

externally the interfaces are modified. So, we will look into this 8086 and 8088

comparison, the execution unit is similar instruction set are similar, but the bus interface

unit part that is there is different, there are differences.

(Refer Slide Time: 15:30)

So, in case of 8086 the we have got 16 bit data bus lines obtained by de multiplexing AD

0 to AD 15. In case of 8088 we have got 8-bit data bus like obtained by de multiplexing

AD 0 to AD 7. In 8086, we have got 20-bit address bus, so here this is 16 bit this is not 8

bit. So, this is a 16-bit this is 16-bit address bus. So, we have got this two banks of

memory each of 512 kilo byte here it is the single bank of memory then this 6-bit

instruction queue 6 depth 6 byte instruction queue, but here it is 4 byte instruction queue.

So, these are these are not bits. So, these are bytes. So, this is a 4 byte instruction queue,

and here it is 6 byte instruction queue.

And clock speeds that you can have in 8086 are 5, 8 and 10 mega hertz, but here it is 5 or

8 megahertz. The now in minimum mode of operations, so pin 28 is assigned the signal

M by I O bar and in case of 8088 pin 28 is assigned as signal I O by M bar because this

was a variation in 8085 the signal was called I O by M bar in 8086 it is M by I O bar. So,

that that modification is reverted, so that it is I O by M bar in 8088. So, to access higher

order byte in case of 8086 BHE bar signal was used, but in 8088 that is not required

because the data width is only one byte. So, this BHE bar signal is not there.

(Refer Slide Time: 17:18)

So, next we will look otherwise the internal operation everything is same. Next thing that

will look into is the co processor 8087. So, 8086 it can operate in along with other

masters. And as we have seen that in instruction set of 8086, there is a provision by

which you can tell that this instructions are for the co processors. So, you can say that

instructions are escape sequence instructions. And if it if the 8086 processor finds that

there is an it is an escape type if instruction, so it will pass that instruction to the co

processor. So, 8087 is one of the co processor that we have that is very widely used with

8086. So, this is basically a co processor for doing complex mathematical operation. So,

8086 you see that it can do basic arithmetic in arithmetic and logic instructions, but it

cannot have floating point operations and all that. So, those can be done by this co

processor.

(Refer Slide Time: 18:24)

So, a multiprocessor system that comprises of two or more processors. So, and entire

task is divided in to sub tasks, and they are distributed to different processors. So,

advantage better system throughput of instead of having a single processor now we have

got more than one processor, so that way we have got the advantage that it is giving us

more computational power.

Each processor will have its a local bus to access local memory or I O devices, so that

greater degree of parallel processing can be achieved. So, there is a local memory and the

processor will have a local memory, and local I O ports mean which it will be accessing

the locations memory locations and I O ports ah locally, but and whenever it needs to

access some global memory location, so there has to be some synchronization between

the processors.

So, system structure becomes more flexible. So, one can easily add or move modules to

change the system configuration without effecting other modules in the systems. So, you

can have more number of multiprocessors attached to the system in a multi processor

system without effecting the others and so that is the essence of this distributed

processing.

(Refer Slide Time: 19:44)

So, in case of 8087, so this is specifically designed to take care of the mathematical

calculations involving integer and floating point data, so that way it is it is it relives the

processor the 8086 processor for doing complex operations ok. And those can be taken

care of by 8087. So, they are also 8087 is also called math co processor or numeric data

co processer numeric data processor or NDP, so that way we can have a number of

instruction number of mathematical operations done by 8087 while 8086 is doing some

other operation in terms of in terms of internal computations. So, other instructions, so

you have to put a 8086 in the maximum mode, and then you can connect this 8087 with

the 8086 through that request grant lines and all that.

So, if you look into the features of 8087, so it can operate on data of type integer decimal

and real types with length ranging from 2 to 10 bytes. So, you see up to 10 bytes means

so the huge numbers can be handled by this tens bytes means so it can handle 80 bit

numbers. So, 80 bit number is really a huge number. So, instruction set the of 8087, it

has got the square root exponential tangent function. So, in addition to normal addition,

subtraction, multiplication, division, so you can also compute square root of a number

exponential. This numbers can be 10 bytes long also as we have seen in the previous

points so numbers can be 10 byte long also.

And you can easily compute the all this things thats square root exponential tangent of

some value. So, that way and the other operations are definitely there like addition

subtraction multiplication division, so they are very much there. High performance

numeric data processor, so it can multiply 264 bit real numbers in above 27 micro

seconds, and calculate square root in above 36 micro seconds, so that is a big thing

because 264 bit real numbers, if it can multiply in 27 micro second. In case of 8086,

multiplication operation the division operation particularly so it takes about 80 cycles for

normal 16 bit numbers.

So, here it is in 27 micro seconds, so it will finish it off this for this 64 bit real numbers,

so that is a huge improvement. And a square can also be obtained in 36 micro seconds.

So, this way many of the mathematical calculation, we can put it on to the 8087 for

relieving the 8086 processor for doing those. And if you want to do then using 8086

means you have to write programs for doing that. So, it will be software driven module,

so that way it will take more time ok. And it follows I triple E floating point standards, so

there is a standard given by I triple E, so it is following that standard, so that any other

party or any other processor who follows this I triple E standardized floating point

standard can use this 8087 as the co processor this is a multi bus compatible. So, it is

compatible with this 8086 bus structure.

(Refer Slide Time: 23:11)

So, so next if you look into this pin diagrams, so it has got this A D 0 to A D 7, so outer

so A D, so this is A D 0 to A D 15. And this address 16 to address 19, so this is a exactly

same as 8086 this address bar structure multiplexed with the data bus and this status line.

So, 16 bit 16 multiplexed address data pins and 4 multiplexed address data pins so that

are there. So, so it can have 16 bit external data bus and 20-bit external address bus just

like 8086, so that way it is going to be useful.

Then the processor clock ready and reset signals are applied as clock ready and reset

signals for co processors. So, this clock reset and ready, so they are coming for the from

the 8086 processor and they are connected to this 87 also. So, if there is a global reset,

then this reset pin will be effecting 8087 also, so it will be this will this will reset the

8087 processor also, then this request grant line, so they are useful for getting control of

this address and data bus from 8086. And then interrupt line is there by which it can tell

the processor 8086 that ok, I am done you can continue now like this over this request

and grant lines. So, it can be done.

(Refer Slide Time: 24:38)

So, there is a busy signal so busy signal from 8087 is connected to the test bar input of

8086. So, why because if the 8086 there is a need some result to be computed by 8087,

before it can execute the next instruction then the user can tell 8086 with a wait

instruction and keep looking for the test bar pin until it finds the pin low. So, this test this

wait instruction, we are seen previously, so it checks for the test bar pin. So, suppose we

have got a complex computation and the user finds that it needs the value of x to be

computed first, but this value of x can only be computed by this 8087, it may be say

square root of some value say square root of y or something like that. So, it takes it

requires 8087.

So, what the processor what the user will do he needs program. So, it will put this wait

instruction. And before that it will put this SQRT instruction for this y and put an escape

before that; to tell that this is basically an instruction to be executed by the co processor.

Now, it puts this wait instruction that means that the program or the 8086 processor will

now wait till this test bar line becomes active ok. So, this is so when this busy signal is

becoming low that means, 8087 has finished completing doing the square root

computation. So, possibly the user program can continue with the next instruction, so

that can be that is the purpose. So, a low on the busy output indicates that the 8087 has

completed the computation so the 8086 this can continue now.

(Refer Slide Time: 26:27)

 Then for this request and grant lines. So, this RQ, GT 0, and RQ GT 1, so this request

grant lines, so this request in grant lines of 8087 are connected to the request grant lines

of pins of 8086. So, I so we can have a number of such devices number of such I should

say number of masters and so 8086 provides two such request grant lines, so that way

you can in a 8087 also we have got two such request grant lines. So, this line is used to

request the processor 8086 to release the address and data bus lines.

So, once they are released then this request is granted. So, then this GT line the grant

signal will come and then ah the processor will be accessing this address and data bus

without any problem. So, it will know that the 8086 has released that address and data

bus lines. So, it will be able to proceed with that. So, since there can be multiple such

devices connected it to 8086 to two such devices can be connected on line zero and line

one. So, here also the same thing it is two lines two devices can be connected on these

lines.

(Refer Slide Time: 27:54)

Then the interrupt pin, so interrupt pin is connected to the interrupt management logic, so

8087 can interrupt the 8086 through the this interrupt management logic at the time ah at

the time error condition exists. So, if there is some error condition, so during the

execution some error has occurred may be its divided by zero or something like that.

Then it can send an interrupt to the 8086 telling that there was an error in the last

computation, so that way this interrupt line can be activated and the 8086 can be

informed that there is some error in the last computation.

(Refer Slide Time: 28:32)

Then this status lines is S 0 by S 0 bar, S 1 bar, S 2 bar, so this is going like this that if it

is 1 0 0. So, this bar this is not used. Then 1 0 1, so this read memory; 1 1 0 write

memory and 1 1 1, it is passive. So, this settings are more or less similar to what we have

in 8086 also, the similar lines where there. And the interesting thing is only for 1 1 1,

where the processor is not doing anything ok, so that is either it is passive mode and 1 0

0, 1 0 1 so they are so 1 0 0 is also that is that is not used so this is that is left by the

designers for some other purpose that is not documented. And this 1 0 1 and 1 1 0 they

are for read and write memory operations.

Then we have got this Q S 0 and Q S 1 lines. So, Q S 0, Q S 1 lines, so they if it is if it is

1 1 then the subsequent byte of off code will be taken from the queue, if it is 1 0 then the

queue is empty 0 1. So, they are same as that 8086 also whatever we have got in 8086.

So, similarly we have got this Q S 0 and Q S 1 bits controlling the showing the status of

the instruction queue that we have. So, those values are coming to 8087 processor. So,

the 8087 will know that this is the status. So, based on that it will try to fetch the next

instruction from the queue or if the if the queue is empty, it will not do anything it will

raise the busy signal telling that it is over, it will make the busy signal low telling that the

instruction is over.

(Refer Slide Time: 30:19)

So, this overall connection is like this. So, this eight 8087 instructions are inserted in the

8086 program. So, this is the first thing. Now, 8086 and 8087 reads instruction bytes and

put them in the respective queues. So, 8086 and 8087 they have got separate instructions

they the instructions queue. So, the instruction comes both of them, and then they are put

on to the queue. Then one cycle is no operation then 8087 instructions they have 11011

as the MSB of their first code byte. So, this is the thing the opcode part. So, 1011 this is

that escape prefix that I was talking about.

Then, this when this escape prefix is seen. So, 8086 will understand that this is not for

me to execute is for 8087. So, 8086 will keep over that instruction and 8087 will take

that instruction for execution. So, 8087 keeps track for these ESC instruction by

monitoring this S 2 bar to S 0 bar 3. And A D 0 to A D 15 of 8086, but also keeps track of

this Q S 0 to Q S 1. So, queue status being 0 0, it will do nothing queue status is 0 1 then

8087 compares the five MSB bits 1101, 01 means there is some byte in the memory

location in the in the queue. So, it will compare this the five ms most significant bits with

11011 if there is a match that means, it can escape instruction.

So, there the instruction is faced an executed by 8087. If there is an error during

execution, then it will send an interrupt to the 8087 will send the interrupt, if there is a

error during decoding this ESC the escape instruction, you will send an interrupt

otherwise it will do normal memory read write additional parts may be required for that

this RQ GT 0 those lines will be activated by which it will access the memory for getting

additional operands and 8087 busy pin is high.

So, so that pin is connected to this busy pin is connected to the test bar pin. So, this test

bar pin using the is not active now. So, after sometime when 8087 will be finishing the

operation then this busy signal will go low the 8086 processor may be executing an wait

instruction for this time, because as I said that if the instruction value that is computing is

useful for 8086 the next instruction, then it will be waiting with the wait instruction. And

when this test bar pin goes low that means, the instruction was over execution was over

and then it was then it will be the 8087 has written the value onto the memory location

and 8086 can take that value.

(Refer Slide Time: 33:35)

So, this co processors, so if you just compare that their operation, so 8086 86 or 88, so if

it finds an escape sequenced instructions, it will wake up the co processor. So, it will

monitor this 8086 or 8088. And then if it is if it is not an escape, then it will 8086 will be

executing the instruction then it will go in to the wait state, if there is a wait instruction is

there. On the other hand, if it is if it is an escape sequenced instruction, the co processor

which was monitoring the 8086 or 88, so it will be triggered that it will it will find that it

is there is an escape instruction. It will deactivate the hosts test pin and execute the

specific operation. So, here the operation will be executed.

Of course, it will take a help of that request grant lines to take to get accessed to the

memory locations where the operands may be there. Then once the instruction is over

instruction execution is over it will deactivate that busy line and does activate the test pin

for the 8086 processor. So, it will wake up the processor and this then it will continue

and this co processor goes back to monitor this 8086, 88 again. So, this way this co

processor can be interfaced with 8086 and they work in an integrated fashion, so that

many of the operations are done by the co processor and 8086 is relieved of those

operations.

