
Microprocessors and Microcontrollers
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 63
8086 (Contd.)

(Refer Slide Time: 00:20)

So, instruction set of 8086, so if so it supports six types of instructions. So, just like other

processors that we have seen, it supports a good number of instruction types. They can

be grouped into data transfer instruction, arithmetic instruction, logical instructions,

string manipulation instructions, process control instructions and control transfer

instructions. So, some of them are common to us, they are well known to us like data

transfer, arithmetic, logical etcetera. Whereas, string manipulation instruction, so they are

something new. And this process control instruction, so there will be some instruction

which are new to us. And this some control transfer instructions will also different types

of branches calls etcetera, so they are processor specific. So, we will see that.

(Refer Slide Time: 01:00)

The first category that we have are the data transfer instructions. So, these instructions

are used to transfer data or address into registers, memory locations and io ports. So, they

involve two operands, now a source operands and a destination operand, and the

operands are of size. Now, in case of 8086, the source can be a register or a memory

location or an immediate data; and the destination can be a register or a memory

location; naturally destination cannot be immediate, it cannot be an immediate data.

There is another restriction like you cannot have both source and destination as memory.

So, you cannot have an instruction where the this you can you cannot say like MOV say

BX comma SI. So, this is not possible. Here what I wanted to mean is the memory

location BX gets the content of memory location SI, so that is not allowed. So, I can

have source as a register destination has a memory or so this is one possibility, source as

a register destination as a memory or I can have source as a memory and destination as a

register, so that is possible or source as an immediate operand and destination as a

register or destination as a memory.

But I cannot have that source as a memory, so this is also memory and this is also

memory, so that is not possible. So, you cannot put both of them as memory. And

definitely the size matters. So, size should be same. So, they should be either a byte or a

word. One 8-bit data can only be moved to 8-bit AH register or memory, and a 16-bit

data can be move to 16-bit register or a memory, so that is obvious.

(Refer Slide Time: 02:49)

So, if you look into different category of data transfer instructions, in the first category

we have got MOV register 2 memory or first operand is register, second operand is

memory or first operand is second operand can be register or a memory. So, like MOV

register 2 comma register 1. So, register 2 gets register 1 memory comma register 1. So,

memory gets a content of register 1. On MOV register 2 comma memory so from

memory it comes to register 2.

So, as I was telling so there is no instruction level MOV memory comma memory, so

that is not there ok. So, we cannot have both operands as memory. Then we can have if

reg so MOV register or memory comma data, so this is the immediate mode. So, you can

have MOV some immediate data to a register or in memory location. So, you can have in

that category, you can have data movement to register or data movement to memory.

There is another instruction which is not there in say 8085 type of processors too much

which is the exchange.

So, it will exchange this content of two registers or a memory location and a register. So,

this exchange register 2 register 1, the content of those two registers will get exchanged

or we can have this exchange memory comma register 1 the content of this memory

location will get exchanged with register 1. So, this way we can have this exchange

instruction.

Now, this exchange instructions have apparently it since there is no point having such an

exchange instruction, because this exchange is equivalent to moving first this AH register

2 to some temporary register. And then from then register 1 will get the content sorry

register 2 will move it to register sorry this register 1, we can put this we can send this

register 1 to register 2. And then finally, the register 1 this t value the temporary value

can be moved to register 1, so that way this register 1 and register 2 content can get

exchanged.

But the point is if we are trying to do this that means, it requires three instructions ok.

And this creates difficulty in many cases for the operating system designers, we need

some facility by which in a single instruction we are able to read the content of a

memory location and change its content ok. So, for that type of instructions for that type

of facilities, so this is a multi byte or multi instruction solution. So, they are not correct

ok. So, we need to have single instruction which will be able to do all these things, so

that is why this exchange instructions may be useful for them. So, this has been

introduced for this operating system design purpose.

(Refer Slide Time: 05:50)

Next we will look into the other data transfer instructions like push and pop instructions.

This push instruction, so this works with push register 16. So, 16-bit registers can be

pushed like you can have like push AX. So, you can have instructions like say push say

BX. So, this BX register content will be pushed. So, first this stack pointer is

decremented by 2, and then this memory address effective address is formed by SS stack

segment multiplied by 16 plus this stack pointer. Then this higher order byte will go to

this memory address s and this lower order byte goes to MA s plus 1 that way the two

successive bytes they will be set. And then with similarly the push memory, so you can

also have this push memory.

So, here this so this is for here also it is the stack pointer is decremented by 2, then this

memory address is formed. And then the two bytes from the starting at this memory

location will be pushed into the stack. And we have just a reverse of push the pop

instruction. So, here the only thing is that the stack pointer is incremented by two after

getting the content from the stack. So, this register 16, so it will be the content will be

coming from this two locations from the stack its and then the stack pointer will be

incremented by 2. And similarly, if it is the pop memory here also the same thing. So,

content from these two stack memory location they will come to the memory address

specified here and then the stack pointer will be incremented by two. So, we can have ah

this push pop also for this data transfer.

(Refer Slide Time: 07:46)

Then other instructions that we have is the input part the by which we can reach some

port and the output part by which we can transfer some output to the output port. So, in A

comma DX, so this is for 16-bit. So, this as you know that we said it is for 16-bit port

address 16-bit port address. So, this is indirect one indirect address. So, port address this

DX value will be put onto the address bus for port address, and this content of that

particular port will come to the AL register.

And this instruction, so destination, so this is AX, so it is taken as the port to be 16-bit.

So, it is expected that on getting this DX value on to the address bus, the port will get

selected, and this 16-bit port value will be coming to the AX register ok. And for 8-bit at

port address, so we can specify it directly. So, address 8, so this is an 8-bit immediate

value. So, we can directly specify some 8-bit port address there. So, this is the direct port

access and that is indirect port access.

So, in AL comma address 8, so as a result from the from that port, the value will come to

the AL register MOV in AL comma A MOV A in AX comma address 8. So, the 8-bit port

address is put, but the port is a 16-bit port. So, port is a 16-bit port. So, it gives 16-bit

value onto the data bus and that comes to the AX register. And just like in so we have got

out instructions, so out DX comma A type of instructions or out address 8 comma A type

of instruction. So, they are just counter parts for the in instructions.

(Refer Slide Time: 09:38)

Next, we have got the arithmetic instructions so far we had the this data movement

instruction or data transfer instructions, now we have got arithmetic instruction. Now, in

arithmetic instruction we have got the ad as the first exemplary instruction the so we can

have this operands like register 2 and register 1 as the two operands. And the meaning is

that register 2 will get the content of register 1 plus register 2. The flags are affected it is

not specified here directly, but while discussing the status flag, so we have seen that the

flags will get affected by doing this operation.

So, this similarly the second operand can be memory also. So, so you can have like ADD

register 2 comma memory. So, memory register 2 gets register 2 plus memory. So, you

can have at least one of the operands as a register. So, both the operands cannot be

memory. So, here the third instruction you have got ADD memory comma register 1. So,

memory gets the content of memory plus the register 1. So, memory can be specified it is

a address specified in different modes that we have seen previously. Then we have got

immediate addition, so ADD register comma data where data is a is a is an immediate

data.

So, register get register plus data or you can have ADD memory comma data, where the

memory content will be added and the data will be added with the memory content the

immediate data will be added and the content is updated. And we can have this ADD A

comma data, so directly we can specify this immediate value AL and AX with AL this 8-

bit data will be added or with AX this 16-bit data will be added. Then there is ad ADC

there is ADD with carry, so similar to ADD, but it is with the carries ok. So, carry flag

will also be added. So, this is register 2 will get register 1 plus register 2 plus carry flag.

So, otherwise it is same as add, but this carry flag will also be added in the summation

process.

(Refer Slide Time: 11:45)

Then the subtract instruction SUB. So, it is again similar to this ADD instruction, but this

for example, this SUB register 2 comma register 1, so it will register 2 will get register 1

minus register 2. So, otherwise it is same. So, whatever we have got for ADD, the same

is true for SUB. And of course, the flag settings will be different, so overflow zero, so

they will be set depending upon the content that you are getting there.

(Refer Slide Time: 12:16)

Then subtract with borrow just like we have got ADD with carry. So, we can have

subtract with borrow. So, the operation is register 2 get gets register 1 minus register 2

minus the carry flag also. So, as a result this is the carry is also subtracted so borrow is

also subtracted. So, if you are if you are having say multi byte addition or subtraction

then this ADC and SBB instructions may be useful as we have seen previously that for

multi byte addition. So, from one byte addition, some carry or borrow is generated and

then that is taken the in next byte while adding a subtracting that next byte. So, we can

take this carry or borrow into consideration, so that way we can have this subtract with

borrow type of instructions useful.

(Refer Slide Time: 13:02)

 Then there is increment instruction. So, this is just incrementing some register by 1. So,

increment register 8. So, this will be incrementing register 8 by 1 bit increment register

16. So, it will increment register 16 by one not one bit by the value one and increment

memory. So, this will incre increment the memory location by one. And just the opposite

of increment we have got the decrement instruction, so decrement register 8 will

decrement the register 8 by the 8-bit register by one. So, like that you can specify any 8-

bit register here, so that value will be decremented.

(Refer Slide Time: 13:41)

Then the multiply instruction so multiply registers. So, what will happen is that AX

register will get AL content of AL into register 8. So, this AL register should for

multiplication there are two numbers that we want to multiply. So, the first number

should be in the AL register. Second number you can put it onto some register, and

mention that register name. For example, you can say like you can say like say MUL you

can say like MUL say CL.

So, what will happen in the AL register, I will have I have some content, so that will be

multiplied by this CL register and the results, so both of them being 8-bit register, so this

result is a 16-bit register value. And this out of this 16-bit this AX register will hold the

this AX, AX register will hold the 16-bit. So, out of that AL will hold the lower order 8-

bit, AH will hold the higher order 8-bit. Now, if the operation is on 16-bit multiplication

like if you say if you say like an instruction is a MUL CX.

So, instead of 8-bit is 16-bit multiplication. So, it is expected that the AX register holds

the other operand, and CX is the other register operand that we have. So, it will do like

AX will be multiplied by CX. So, as a result this multiplication will produce a 32-bit

output. So, in the out of this 32-bit output that DX register will hold the higher order 16-

bit and the AX register will hold the lower order 16-bit, so that is how this multiplication

instruction will take place. Then there is I MUL I MUL instructions, so this will be

integer multiplication. So, it will be it will be doing this multiplication operation is

similar, but it is just for the integers.

(Refer Slide Time: 15:46)

So, similarly we have got this division operation. So, division with register or memory,

so this division AL will hold this AX divided by register 8. So, this ah. So, this is the this

is the quotient part that will be going to the AL register, and the AH will get the

remainder part. So, AX mod register 8. So, that will go to the AH register. So, so this

whatever register is specified, so that so that will be used to divide the content of AX

register, and the AL register will get this quotient part and AH register will hold the

remainder part. For 32 bit division, so this quotient the dividend is contained in DX and

AX pair, DX will hold 16-bit higher order 16-bit, AX will have lower order 16-bit and

that is multiplied by that is divided by this register 16.

Like you can say write like something like say DIV you can say like DIV BX where a

16-bit division. So, what it will do. So, DX colon AX, so that will be divided by BX. So,

this will produce a quotient and a remainder part. So, the quotient part will go to the AX

register. So, this will be available in the AX register, and the remainder part will be

available in the DX register. So, this way it does the divisions. Similarly, instead of

registers, you can have this memory operand also and the otherwise it is same, the

operation is similar.

(Refer Slide Time: 17:22)

So, we have got this other division also, this I DIV is instruction for this another division

operands operation that we can have there.

(Refer Slide Time: 17:34)

Then we have got the comparison instruction then this comparison instruction. So, it will

compare two registers or one register with a memory location ok, so but you cannot have

the same thing that is you cannot have both the locations both the operands as memory,

so that is not possible. So, the flags will be modified like say compare a registered 2

comma register 1. So, what it will do the modified flag, so that they would depend on the

value of this register 2 minus register 1. If register 2 is greater than register 1, then carry

flag will be 0, zero flag will be 0, and sign flag will also be 0. If register 2 is less than

register 1 in that case carry flag is 1, zero flag is 1, 0, and the sign flag is 1.

So, basically the if so by this we can check for this less than condition. After this

comparison so if you put a jump on jump on less or something like that then if the if this

carry flag and sign flag they are set that will mean that there is an there is a comparison

where register 2 was really less than register 1. And for equality condition this carry flag

is 0, sign flag is also 0, and this zero flag is set to 1. So, with that you can have

instructions like jump on 0; and all that after the comparison instruction. So, rest of the

thing they are similar. So, you have got this comparison with one of the operand may be

memory for the comparison operation.

(Refer Slide Time: 19:03)

So, we can also have comparison with immediate data like compare a compare register

comma data where this data is an immediate operand. So, you can do this comparison

like if register is greater than data then this say flags will be set like this. If it is less than

data then the flag setting will be like this. So, this way we can have different flag settings

ok. And we can we can have this comparison instruction for the arithmetic operation. For

immediate operands so again the two thing you can have an 8-bit data or you can have a

16-bit data.

So, for 8-bit data, so we can have instruction like compare AL comma data 8, so that way

you can have the 8-bit data there. So, again the operation is similar. So, AL minus data 8

will be done. If AL is greater than data 8, then the flags will be set in some fashion and

the otherwise the flags are set in different fashion so as it is specified here. So, if this if

you are specifying this AX, then you can have a 16-bit comparison also that way it is

very much flexible both 8-bit and 16-bit comparison can be done.

(Refer Slide Time: 20:16)

Next, we will look into the logical instruction. So, logical instructions were we are doing

the logic logical operation like AND, OR, XOR testing or shifting and all that. So, the

first one the AND operation, so AND a comma data so this will do ANDing of a with the

AL register with some data 8 like say 8-bit data. So, AL will get AL and ANDed with the

8-bit data that the under the immediate mode or 16-bit data under the immediate mode

AX and data 8.

So, for OR instruction, so again the same thing we can have this registered 2 or memory

or we can have it like this registered two memories of they will be odd these two register

contents will be odd, and the result will be available in register 2. So, you can have this

that immediate data also like you can write like OR register memory comma data. So,

you can say like or say AX comma some 16-bit data, so that 16-bit data will be OR with

this register bit by bit, and the result will be available in the AX register. So, this way we

can have this OR with 16-bit data. Or if you are directly writing so instead of writing

register, so you can also take this value to AL register and CX AX registers for doing the

8-bit operations of this OR.

(Refer Slide Time: 21:44)

The next important category of instructions that we have that is the string manipulation

instructions. So, this is a new instruction that type that we category that we have in 8086.

So, string is any sequence of bytes or word. So, unlike say what we know about a string

that is a character string or things like that. So, in case of 8086 processors, so it cannot

distinguish between a numbers and characters ok, so that is why it is any sequence of

bytes or words so that is taken as a string. So, this instruction set it includes instructions

for string movement comparison, scan, load and store. So, these are the various string

manipulation instructions that are available in the 8086 processor.

There is one REP instruction prefix repeat instruction prefix. So, it is used to repeat

execution of string instruction. So, if you say REP then the instruction will be repeated,

execution of the instruction will be repeated. Then string instructions that end with S, SB

or SW. So, S like MOV is the normal movement between registers, MOVS is the string

movement that way and MOVS B is the bytes string MOV byte movement and MOVS

W is the word string movement. So, we can have this moves MOVS B, MOVS W like

that, then CMPs, CMPs B, CMPs W like that.

Offset or effective address of the source operand is in SI register and that of the

destination operand is the is in the DI register. So, we have got the SI DI register pair, so

which are holding the source are destination addresses depending upon these status of

this direction flag SI and DI registers are automatically updated. So, after every byte or

word transfer this SI and DI registers, so they will be updated automatically. So, DF flag

if it is so that will tell us the direction, and based on that it will be updated.

If DF equal to 0, then this SI and DI, they are incremented by one by one for byte and 2

for volt. So, if it is MOVS B type of instruction then after doing one transfer this SI and

DI will be incremented by 1. If it is MOVS W type of instruction, then it will be updating

by two incrementing the value by 2. And if DF equal to 1, then instead of incrementing it

the values will be decremented ok, so this way we can have this string manipulation

instruction.

(Refer Slide Time: 24:15)

So, this REP prefix. So, this REP prefix can be if the REPX or the REPE, So it is the

repeat the compare CMPS or SCAS the scan instruction till Z zero flag equal to ZF flag

becomes equal to 0. So, while CX not equal to 0, and ZF equal to 1, so it will repeat the

string instruction. So, and after that after every transfer, this CX bit will be updated. So,

CX will be updated to CX minus 1. So, this using this repeat construct, so we can we can

just repeat prefix. So, we can repeat this compare or scan instructions similarly REPNZ

so repeat this CMPS or this SCAS instruction until this 0 flag is equal to 1. So, until ZF

equal to 1, so it will on repeating the operation and after every execution, so it will

decrement the CX register value by one in both the cases.

(Refer Slide Time: 25:19)

So, the MOVS instruction, so we have got two variants MOVS B and MOVS W. So, for

the MOVS B instruction what happens is that the memory address is computed as DS

into 16 plus SI for the source part for the destination part it is MA E which is ES into

sixteen plus DI then ma the content of memory location MA is transferred to the memory

location M MA E. Now, if DF equal to 0, then after doing this transfer. So, DI value is

incremented by 1, and SI value is decremented by 1. And if DF is equal to 1, then DI and

SI those values are decremented similarly this MOVS W instruction. So, this is similar to

MOVS b, but this incrementing and decrementing. So,. So, or two bytes will be

transferred like this MA E will get the content of memory location MA; and in memory

location MA E plus 1 will get the content of memory location ma plus 1. And after that

this DI and SI values they are decremented or incremented by 2. So, this way this MOVS

instruction can be useful.

(Refer Slide Time: 26:32)

We have got CMPS or compare instruction. So, this CMPS instruction also has got two

variants compare CMPS B and CMPS W. So, CMPS B the address calculations are same

as the MOVS instruction. So, this MA and MA E values are calculated. And then the

ASIC key values of those locations are compared. So, if ma value content of memory

location MA is greater than content of memory location MA E then this will be the flag

setting. If MA is content of memory location MA is less than content of memory location

MA E then this will be the flag settings. So, this you have got different flag settings and.

And then for the byte operation this DI values will be updated by one and for by word

operation they are updated by two. And depending upon the DF bit, so the this updation

may be an addition or updation may be a subtraction. If DF equal to 0, the value may be

incremented DI and SI values may be incremented, and if DF equal to 1 in this DI and SI

values may be decremented. So, this way we can compare between byte string byte or

string word.

(Refer Slide Time: 27:50)

Then there is a scan instructions. So, scan a string byte or word with accumulator. So,

SCASB. So, SCASB what is it doing so here it is only this destination address is taken.

So, ES colon DI, so that address is computed, so that is MA E and then it will be

compared with the AL register. So, it is not compared with any other source block, but it

is compared with the AL register. So, basically in the AL register, you can put a particular

character, and you can try to scan for that character into the into a string, so that is very

common of common operation to find the occurrence of a character in a string, so that

can be done by using this SCAS B instructions.

So, if AL is greater than MA E then this is the settings of the comparison standard

comparison. So, if they are same, if the character are character matches with the AL, then

this zero flag will be same. So, you can compare this and get the matching. And if DF

equal to 0, then DI will be incremented if DF equal to 1, DI will be decremented.

And we also have a 16-bit comparison. So, SCASW. So, here the this AL, so this is AL,

so this is AX will be compared in fact, with this AX and MA E. And then if AX is greater

than MA E, and MA E plus 1, so then this flags will be set ok. So, this content should be

ah. So, this one should be this should be AX minus MA E colon MA E plus 1. So, these

two values should be compared. And if AX is greater than this quantity then the flag

setting will be like this; otherwise the flag settings will be the otherwise. So, this way

you can have this SCAS instruction for doing this memory operation this string operation

comparison and all ok.

