
Microprocessors and Microcontrollers
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 62
8086 (Contd.)

The simplest of all these addressing modes is the register addressing mode.

(Refer Slide Time: 00:21)

So, here the operands are registers. So, most of the operations that we have in 8086, they

are two operand instruction. So, where we apart from the off code, we will have two

operands on which through which the operation, we will take place. So, the instruction

will specify the name of the register which holds the data to be operated on by the

instruction like say MOV CL comma DH. So, content of this DH registered will be

moved to CL register. So, both are 8 bit registers. So, there are no problem. So, CL gets

DH. So, this is an example of this register addressing mode.

(Refer Slide Time: 00:56)

Then we have got immediate addressing mode; so, in immediate addressing mode. So,

the second operand that we have is an immediate value; the first operand have may be is

a register; whereas, the second operand has to be a immediate value. So, this is

immediate value can be 8 bit or it can be 16 bit that depends or so, there should be a

match like if the specifying an 8 bit registered here, then this value should also be an 8

bit value, if you are mentioning a 16 bit register here and this value will be taken as a 16

bit value; so, this MOV DL comma 08 H.

So, this is 08 H will come to the DL register; that is a 8 bit value and MOV AX comma

0A9F H. So, this is a 0A9F H will come to the AX register out of that this is 0 A part. So,

this will go to the register and the 9 F part will go to the AL register. So, that way, this 16

bit value will be divided into higher order byte and lower order byte and they will be

going to different registers.

(Refer Slide Time: 02:02)

So, for memory access; so, you see that 8086 has got 20 address lines. So, these address

lines are they can address up to 2 power 20 equal to 1 megabytes of memory; however,

the largest register is only 16 bit; so to get this physical address. So, this actual address is

calculated the actual address of a byte in memory that is the value of that goes out on the

address bus that has to be calculated and that is the physical address.

So, how is this physical address represented, this is represented in the form of a segment

value and then offset value; so, 89AB colon F012. So, what is what will happen is that

this is 8 9 AB. So, this will be left shifted by 4 bits. So, that way, in a extra decimal

forms if you write. So, as if I a 0 will appear at the end. So, it will become a twenty bit

value. So, this is the 20 bit value each digit corresponding to 5 4 bits the 5digits. So,

there are 20 bit and this F012. So, this is the offset part.

So, F012 is taken as this is also a 16 bit values. So, we take it as a 20 bit value. So, most

significant digit in hexadecimal notation becomes 0 and then you do the addition after

that you get a 20 bit result. So, that will be accessed that will be the physical address. So,

physical address is the address the actual address of the bytes for the physical memory.

So, it will be doing this memory access will be done by doing this operation; so this

89AB F012. So, these quantities can come from different registers like if you are writing

like if you are using say the SI register.

So, SI register contains F012 and DS register contains 89AB, then when you are saying

that MOV AX comma within. So, if you are writing like say MOV AX comma within

bracket SI then we assume that this 89AB. So, this is in the DS register and this is in the

SI register. So, this is what will happen internally and then the on the address bus the

address that will be put is 98AC2 H. So, that way the operation takes place.

(Refer Slide Time: 04:24)

Next we will look into the different addressing modes, first of all, first one is the direct

addressing. So, in case of direct addressing the address is directly provided in the

instruction itself. So, the address of the memory location is given in the instruction itself

the effective address is a 16 bit number.

So, this is the 16 bit number that we have. So, 1354 h ok. So, this is the 16 bit number or

0400H. So, that is the 16 bit number. So, this square bracket that we have this square

bracket. So, they will identify that we are interested in the contents of those location. So,

if these are not there if these are not there. That means, we will tell that that is actually

the immediate addressing ok. So, that is the convention followed during a 8086 assembly

language. So, if these square brackets are missed are missing, then that will mean and

mean and immediate data if this square brackets are there, it will mean that it is an

address.

So, it will be accessing the corresponding memory location. So, when executed this

instruction will copy the content of memory location into the BX register and then. So, in

this case, in the first instruction, what will happen is that this BL register will get the

content of memory location 1354 h. So, that will come to so, 1354H. So, it that DS colon

should be there sorry, this is not 1354, I cannot say exactly, what is the location content,

but that is DS into 16 plus 1354.

So, that location content will come to BL and the BH register will get may content of

memory location DS into 16 plus 1355H, the next memory location content, we will

come to the BH register because this the 16 bit data movement whereas, this instruction.

So, this is one bite data movement. So, BL register will get the content of memory

location 16 into DS plus 0400. So, this is called direct mode because the displacement of

the operand from the segment base is specified directly in the instruction itself. So, that is

the direct mode of the operation.

(Refer Slide Time: 06:50)

Next, we will look into something called register indirect mode. So, register will be used

to give the address whose content will be accessed by the those content will be accessed

by the processor; so in register indirect mode. So, name of the register which holds the

effective address is specified in the instruction itself like we are writing like MOV CX

comma within square bracket bx. So, this effective address is the content of the BX

register. So, this BX register whatever it is holding. So, that will be the effective address

and the base address is DS multiplied by 16 and the actual memory address are the

physical address that is generated is this base address plus this effective address. So, they

will be summed up and we will get the actual memory address.

So, this way it will be operating and ultimately the CX register will get the content of

this memory location whose address is given by this MA memory address or I can say

that CL will get the content of MA and CH will get the content of MA plus 1. So, this is

how this register indirect mode is working. So, this BX register is used as the indirect as

the base register as the offset register that can be used for accessing the memory location.

(Refer Slide Time: 08:17)

Then in base addressing; so this is the this is the another type of addressing which is

similar to your indirect addressing, but this DX or DP register, they can be used for

holding the base value and the effective address and then sign 88 bit signed or unsigned

value or 16 bit displacement that will be specified in the instruction. So, the signed 8 bit

or unsigned 16 bit displacement can be specified.

So, this is a typical example like MOV AX BX plus 08H. So, along with this base

registered BX we are also specifying we can also specify an offset. So, in the offset is not

there then of course, this BX will be used as the based register and then this will be

accessing AX plus a, this DS into 16 as BX, but if you are specifying some offset x

another offset some displacement. So, that displacement will also get added. So, first of

all this 08H, this is an 8 bit number.

So, this is extended to 16 bit sign extended to 16 bit. So, get 0008H and then this ea gets

BX plus 008H. So, this effective address that we get; so, that is BX plus this is value if

the content of BX is a 1000. So, after this addition the EA the effective address will

become 1008 and then this based address is DS in to 16 and the memory address that is

generated is this base address plus this, this, this base address plus this effective address

that we have. So, then this MA register sorry this AX register will get the content of

memory location whose address is this memory address MA and or you can say that the

AL gets the content of MA and MA h gets the content of MA plus 1.

So, so if say BX is say equal to 1000H then with this thousand this 8 is added. So, this

becomes 1008 x and then it depends on the DS register. So, if DS location content is say

2000, then this 2000H. So, this 2000 is left shifted by 1 B of 4 bits. So, it becomes this

one with that this 1008 will be added. So, it is 21008. So, that particular memory location

will be accessed. So, this is that memory location 21008. So, this location will be

accessed and this MA equal to 21008; so this MA.

That is the memory address. So, that co locations content will be accessed and that will

be going to the EX register AX register. So, that locations content will come to the AX

register. So, this way we can have the based addressing mode and you see instead of BX

you can also use BP, but if you use BP, then this stag segment register will be used. So,

here instead of this BX, if I use BP, then the modification that we will have is instead this

one instead of being DS. So, it will be SS the stack segment register and otherwise it is

same otherwise the execution is same then we will look into the next addressing mode

which is known as the indexed addressing mode.

(Refer Slide Time: 11:54)

So, indexed addressing mode it uses some index registered to ho to access the memory.

So, this SI or DI registered is used to hold an indexed for memory data and signed 8 or 6

unsigned 16 bit displacement can also be specified. So, you can say something like this.

So, the basic form is like so, where the displacement is not there. So, we the basic form

is like say MOV CX comma within bracket SI. So, you see that all this mode. So, they

are some sort of modifications of this immediate sorry the indirect addressing mode, but

they have been even different names because they have got the specific usage this source

index registered, they are they are thought to be working as indexed register and they are

useful when we are doing this string data transfers. So, that is why they have been put in

to separate mode this SI and DI.

So, in this particular case what will happen you can understand that CX register will get

the content of memory location, whose address is given by 16 into DS plus SI and in this

example, we have got some additional, we have got some additional offset specified

additional displacement specified. So, that displacement will be added. So, this so, this is

the sign extended. So, you see that this particular number A 2. So, A 2 means that if you

if you take that 8 bit notation then a means 1 0 1 0 10 and 2 is 0 0 1 0.

So, in that 8 bit notation this most significant bit is one most significant bit is one means

this is the negative number. So, first before doing the addition the SI plus 082H; so this is

extended to 16 bit. So, for 16 bit extension what is done this most? So, this bit is made

0010 the 2 part and this part is 0 1 0 0010 1 that is all right, but since this is negative; so

this 8 8 bit that we have. So, that is made negative ok. So, all these this sign extend; so

this or the sign extension. So, all these bits will become one. So, that it represents the

same number A 2 x in 16 bit notation. So, that is the sign extended form of this.

So, these become FFA2 H and with that the FFA2 H will be added with the SI register

for getting the offset and then this memory address will be calculated. Next, we have this

based indexed mode so based indexed mode mean.

(Refer Slide Time: 14:54)

So, we have got this based register plus this indexed register. So, they are taken together.

So, many times what is what will happen is that you may you may need to have 2 or

more indices particularly if you are doing say in particular these the 2 dimensional arrays

and all that then this may be useful that in maintain 2 different indices I and j for the 2

different dimensions and for that purpose.

So, we can use this type of double indexing register and double in direct addressing type

of thing. So, the effective address is computed at some of the base register and indexed

register. So, based register is DX plus BX or BP and index register is SI plus SI or DI; so

here also the same thing that is 0AH. So, when you sign extent. So, it becomes 0 0. So,

0AH is a positive number. So, sign extended form is 16 bit sign extended is 000AH, then

this effective address is BX plus SI plus this 000AH. So, it based address becomes based

address is DS into 16 because these instructions since SI and BXI have been used.

So, it will be using DX as the segment register. So, it is DS into 16 and the memory

address is this based address plus this effective address and if it is BP instead of BX if it

is BP then you will be it will be using the SS register as the stack segment register as the

segment register instead of the DS the data segment register next will look into string

addressing.

(Refer Slide Time: 16:33)

So, string addressing for doing the string operations. So, string is one of the very

important data type you can say because it is used in many applications particularly for

doing comparison when you have got some data from outside you also need to compare

or many a times, for in high level programs, we have got lot of string manipulation

instead operations to be taken to be done and if the underlined processor supports this

string manipulation directly, then in the software you do not need to do much complex

programs for supporting this string. So, overall the string operations will be made faster.

So, this was the objective with which this string addressing was introduced. So, this is

employed in string operation to operate on string data the effective address for the source

data is stored in SI register and for the destination it is stored in the DI register and the

segment register for the source part it is DS and for the destination part it is ES. So, if

typical example is this MOVS instruction the MOVSB so on MOVS Byte.

So, you can write like byte or you can write like word etcetera. So, or in short you can

also simply write it as MOVSB. So, this can also be written in short as MOVSB or you

can write in full form like MOVS Byte. So, how is it done like this effective address the.

So, for the source is available in the source index registered SI then this base address is

DS DS register will contain the segment address. So, base address is DS into 16.

So, the memory address is BA plus EA. So, based address plus effective address for the

destination part then for the effective address will be calculated as DI and this for the

destination part this base address is from the extra segment register ES. So, ES into 16

that will give us the base address for the destination part and the memory address is BA

plus ES. So, so this is this extra segment effective address and extra segment base

address. So, they will be added to get these MAE; the memory address for X EX extra

segment or for the destination and finally, this MAE will get the memory location MAE

will get content of MA and after that if DF flag is set then SI will be decremented and DI

will be decremented and if DF is 0 then SI will be incremented and DI will be

decremented.

So, as I was telling that if you are moving from source block to the destination block and

if you have got if there is overlapping. So, if you are overlapping is such that the

overlapping is. So, this is the overlapping. So, this is the source and this is the destination

then what you need to do is that this SI value SI value should point to the bottom of the

source and DI should point to the bottom of the destination and from there we should

start copying. So, in these I have to decrement the values of SI and DI after each byte

transfer. So, I have to set this DF value to be equal to 1, in that case and otherwise, if the

if the overlapping is in the other direction in that case, I have to set this DF value equal

to 0. So, that this SI and DI values will be incremented after fd transfer and we can have

this CS register initialize to the some count.

So, to see how to have how many bytes you want to transfer. So, before calling moves b;

so if I say like MOV CX comma hundred; that means, this CX register will have the

value hundred. So, in that case, 100 bytes of data will be transferred will be copied from

source to destination and after every copy this SI and DI registers will be updated to

point to the next byte and this CX register value will be decremented to see that whether

hundred byte transfer is over or not. So, when it is done then it will come out of this

MOVSB instruction.

(Refer Slide Time: 20:58)

So, next will look into IO port addressing; so there are these addressing modes can be

used for to access data from standard IO map devices or port. So, IO map IO can be

used. So, where the port address is the IO port address and in or we can have memory

mapped IO where this memory value locations are the IO ports are taken as memory

locations only and simple MOV type of instructions can be used. So, in direct port

addressing; so, we can have this 8 bit port address directly specified like this I can have

in AL comma 09H. So, this port address is 09H. So, on the address box this 09H will be

put and it is expected that the corresponding device will get selected and the value will

be available on the data bus.

So, at the end; so this AL will get into the content of the port whose address is was 09H

and in indirect port addressing. So, some register value will be used as the port address.

So, we can specify a 16 bit port address and some registered value will have the address

whatever be the content of this DX register. So, that is put on to this address bus and then

this AX register will be content will be put on to the data bus. So, that this AX register

content will go to the corresponding port; so, so this way, we can have this IO port

addressing both direct IO that is having 8 bit address or indirect IO having 16 bit address

bia some register.

(Refer Slide Time: 22:38)

Next we will look into relative addressing. So, relative addressing means that with

respect to the current program location. So, we are trying to update the instruction

pointer to go to the next instruction. So, the effective address of the program instruction

is specified relative to the instruction pointer by an 8 bit signed displacement. So, this is

like this JZ 0AH. So, this will be this JZ 0AH. So, this will be doing like this first of all

this 0AH. So, this will be sign extended. So, it will become a 16 bit value; now if the 0.

So, if jump on 0. So, it will check the 0 flag, if 0 flag is equal to 1, then the effective

address will be IP plus this 00 0AH, the extended value based address is CS into 16.

So, that is good for any code segment access and then the memory address will be this

BA plus ea. So, that will be the finally, this will be the memory location, now the 0 if the

0 flag is one then the program control will jump to this particular address and if it is not

if it is the 0 flag is 0, then as if the instruction is not there. So, it will be executing the

next instruction that is coming in the sequence one thing to note here is that this

displacement that is specified.

So, this is only 8 bit displacement; that means, you can you can do this relative jumping

up to 256 locations minus 128 to plus 127 from the current location. So, if this is the

current location. So, this offset is 0. So, from there you can go back by minus 128

locations or you can come forward by plus 127 locations. So, unlike say arm processor

where it was plus minus 32 MB so that was a quite big number, but here it is restricted.

So, here it is for relative addressing. So, it is only 8 bit of course, you have got other type

of branching in which you do not need to be restricted by this 8 bit, but relative

addressing is 8 bit. Next, we will look into next we will look into another addressing

mode which is implied addressing like some of the instructions where there is no

operand operands are not needed the instruction itself will specify the data on which to

operate say CLC. So, this will clear the carry flag to 0.

(Refer Slide Time: 24:54)

So, no operand is needed or say halt or say knob; so this type of instructions where the

operands are not required. So, they are it will be that is the implied addressing mode. So,

you see that 8086 has got a large number of instra, the large number of addressing modes

and this addressing modes are useful in different ways of course, actually these started

this Intel they started with 8086 with lot having lots of addressing modes and later on

when processors are being designed like when you look go to. For example, arm

processor, we have seen that many of this addressing modes have been kept and many of

them have been removed like when you are going to this risk feature then many of the

complex addressing mode like based indexed and all that. So, they have been removed

whereas this, whereas this is the indexed addressing indirect addressing. So, they have

been kept. So, that way it goes.

(Refer Slide Time: 26:09)

So, next we go to the instruction set of this 8086 processor and we will see that using this

instructions the addressing modes this instruction sets can be designed by which we can

program this 8086 processor to do several operations.

