
Microprocessors and Microcontrollers
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 60
8086 (Contd.)

(Refer Slide Time: 00:19)

So, 8086 architecture, so it consists of two units as we have noted in the last class, there

is a bus interface unit and there is an execution unit. So, bus interface unit is on this right

side. So, this actually point containing the logic by which it can access the bus that is the

address bus, data bus and all that. And on the left side, you see that execution unit where

the actual execution are taking place. So, we will look into this in detail.

(Refer Slide Time: 00:44)

So, this bus interface unit so to be more specific. So, there are some 16-bit registers CS,

DS, SS and ES. So, they are called segment register. So, code segment register, data

segment register, stack segment register and extra segment register. So, we will look into

the functionality shortly. And there is another 16-bit register which is the instruction

pointer or IP. So, this IP is similar to program counter that we have in 8085. So, here in

8086, this IP and this CS, they two will be constitute in the 20-bit address bus. Similarly,

when it is accessing data the DS or SS or ES along with that some other register may be

combined, and you will get the data address or the stack address like that.

So, will see that that memory addresses are generated by a combination of this segment

register and some offsets. So, for program access the code access, so this CS and IP, so

those two will be added for others some offset value will be added with the other

segment registers. And there is a separate address generation ALU ok, so this is one 20-

bit adder and this adder is dedicated for this purpose. So, you see that you look into this

diagram you see there is one ALU on the execution unit which does which also has the

capability to do addition, but this ALU is not given the task of generating the address. So,

for address generation, a separate address generation adder is put into this module.

So, so CS value and this IP value when they are coming then that will be combined

together to get 20-bit address and that 20-bit address will be put onto this address data on

the this address bus and through this bus control logic. So, it will be connecting to 8086

bus. So, this 8086 bus you know that this is a multiplexed bus 20 bit 20 bit bus out of

which 20 bits can constitute the address; 16-bits can constitute data, and there are some

status bits that will be multiplexed with higher order address lines to get 20-bits here ok.

So, we will look into these one by one.

(Refer Slide Time: 03:02)

So, this bus interface unit the operation is like this. So, if this is a physical memory

address that is a physical memory starting at say 0000 to say 200000 so 4, so that way it

is increasing now. So, it is divided into segment. So, physical memory is divided into

segments. So, may be this 0 to 2000H so that is one segment. So, this is the next

segment. So, we call this segments ok.

Now, this segments may be continuous, so segments may be disjoint, segments may be

overlapping. So, this definition of segment is with respect to I should say the

programmer. So, programmer may define the segments to be common, segments to be

disjoint, segments to be overlapping like that. And the segment register settings can be

controlled by which you can you can have a difference between this overlapping or this

disjoined or that way. So, this overlapping pattern can be controlled by putting this

segment register values. So, in this a particular program may consists of a number of

segments like segment 0, segment 1, 2, 3, 4 out of which so this segment 0 and segment

1, they are continues. After segment 1 starts segment 2 and segment 1 there is a partial

overlapping. So, segment 1 also partially overlaps with segment 3, 2 and 3 are

completely overlapped. So, then 3 and 4, 2 and 4 are disjoined.

So, like this we can have different style different type of overlapping. So, total memory

that 8086 supports is so 1 megabyte, so 20-bit address bus total memory is one

megabyte, and it is divided into 64 k segments. So, each segment has got a maximum

size of 64 k, so 64 kilo byte. So, now you can think about different types of overlapping.

So, it is not mandatory that your memory should be divided into two segment or four

segment or eight segment like that. So, depending upon the programmers requirement it

can be done but each segment the size will be 64 k irrespective of overlapping or non

overlapping.

And then there are four such segment registers CS, DS, ES, and SS. So, it can use this 4

segment. So, if the all the segments are distinct from each other disjoint from each other,

then this 64 k multiplied by 4, so you can get 256 kilo bytes in one megabyte memory.

So, there are four segments, so this each segment is 64 kilo byte, so I can have a total of

256 kilo byte of memory that can be addressable at one point of time. So, naturally there

are the other segments. So, out of this one megabyte only 256 kilo bytes are accessible,

so rest are there.

So, basically the purpose is that I can have a multiprocessor multiprocessing system,

where different user programs are loaded in different part of the memory. So, this

provides generic structure like you can you can give 256 kilo bytes to per user. So, you

can support four users directly, so that way so that may be the simplest possible

organization. And you can think about any other complex combination of this segment

register, and the segment definitions.

So, programs obtained access to code and data in the segments by changing the segments

register content to point to the desired segment. What I say what I what it means is that

maybe I have in my program I have got say two data segment. So, this is one data

segment and this is another data segment. So, at some point of time, I want to access this

data segment. So, in that case somehow this DS register should be made to point to the

beginning of this. Sometime later in the program if you find that need to access this data

segments. So, you can change the DS register, so that it points to this data segment now.

So, you see that one point of time. So, you can access four different segments by through

this segment register. But if you want, so you can change the content of those segment

registers in the program as a result it can access different regions of the program different

regions of the memory during execution.

(Refer Slide Time: 07:35)

So, the next is about the segment registers we will start looking into more detail. So,

there are four segment registers as I said the first code segment register is CS or it is

called code segment register. So, this is a 16-bit register. So, this code segment register is

basically for pointing to the segment of the memory that contains the code of the

program. So, the so naturally the code is not modifiable. So, it is actually trying to

distinguish between code program memory and data memory. So, in the sense that this

program memory will be pointed two by this CS register, the codes segment register;

whereas, this data memory will be pointed two by this data segment register that extra

segment register like that.

Of course, you can over write options it is not mandatory that this code segment register

cannot be used for the data access, so that can be done but there should be explicit over

writing that way. So, if you do not take the overwriting then the code segment register is

16-bit register, it contains the base or start of the current code segment. So, an IP the

instruction points there it will contain the distance or offset from the of the of the from

these address to the next instruction byte to be fixed. So, if we say that this is my this is

my memory and in that memory so my code segment is somewhere here. So, this is my

code segment part this is the code part.

So, what is what it means that the CS register will point to the beginning of this

segment? And within that at some point of time if I am at this statement, so this is that

this off set distance from the beginning of the segment, this distance this distance is

contained in the IP register. So, in after this access is over so this IP will be updated, so

that IP register will point to the next instruction, then it will point to the next instruction

that way. So, this CS colon IP, so it is normally retained as a pair, so CS colon IP, so CS

colon IP it contains the next instruction to be accessed. So, it is the next instruction to be

accessed, so that way you can say that the equivalent of this program counter that we

have in 8085 is the CS colon IP pair the CS colon IP pair this it will be converted into a

20-bit value will see how it is done.

So, this bus interface unit. So, this will be converting this it will be getting this 20-bit

physical address by logically shifting the content of CS register 4-bits to the left and

adding the 16-bit contents of IP. So, we know that CS registered is 16-bit and this IP is

also 16-bit. So, this is CS is 16-bit and IP is also 16-bit.

(Refer Slide Time: 16:24)

So, first what is does is that CS left shifted by 4-bit positions, so you get this 20-bit

pattern now. So, this is the 16-bit CS value that is that has left shifted. So, you get

another four bits which are all zeros this bits are all zero, but overall number is 20-bit.

So, with that that way the 16-bit IP will be added. So, 16-bit IP will be somewhere here.

So, these bits will be taken as zero, this is the twenty 16-bit IP, so that will be added and

the resulting value will be 20-bit this resulting value will be 20-bit and that is the

physical address ok. So, this is 20-bit physical address will be formed logically shifting

the content of CS register by 4 bits, and then adding the 16-bit IP with that.

So, all instructions of a program, so they are relative to the content of this CS register

multiplied by 16. And then the offset is provided by IP. So, if so this provides a very

good facility for loading the program at different places like if you if you some point of

time, you find that the program will be loaded from memory location 1000 then this CS

register can be initialized to say to 1000 right shifted by 4 and then IP so that way it is

the while actually running the program, so it will be left as CS will be left shifted by 4

bits. So, it will be doing fine.

Whereas, so the if it is so what I mean is suppose this program is loaded from memory

location started at starting at memory location 01000 that way 20-bit address, so

programming starting from this address. So, for this purpose the CS register should be

loaded with the pattern 0100 ok, so that whenever you are using the IP register is initially

zero, so that when the first instruction is being accessed. So, this should be less shifted

by four bits. So, as result you will get the pattern 01000 with that this IP value will be

added. So, you get 01000, so it will be accessing the first location then IP is incremented

it will be accessing the next location, so that way it will go. So, this way we can have this

16-bit offset program re location can be done. So, program relocation is just changing the

CS value. Loading the program at different places. So, by just changing CS value the

program relocation will becomes simple.

(Refer Slide Time: 13:14)

So, so next register segment register that we have data is the data segment register. So,

this data segment register is again our say DS this is this is also called that register, this is

also called the register DS. So, this DS register is a 16-bit register and it points to the

current data segment. So, just like to CS points to the code segment, DS point to the data

segment. And operands for most instructions are fetched from this segment. So, please

note this term it is the most instructions ok.

So, you can if you say that I want to get the content from memory location say two ok, so

I want to get the content of memory location two. So, what will happen is actually the

when I say 2, this will actually mean DS colon 2 that is the content of DS will be left

shifted by 4-bits that is multiplied by 16 plus 2. So,. So, whatever be the address so this

DS, so when I say that I want to get the content of memory 2, so this is actually the

location that will be access DS into 16 plus 2. So, this way we can have this segment

registers, data segment register pointing to the data segment and it is a most instruction

means some instructions they use some other segment register for data access.

So, for example, particular so when you are accessing stack the stack segment register is

SS used for access or whenever there is a another segment register ES or extra segment

register so that can also be used for data segment. So, this 16-bit content of the source

indexed register SI and destination index is DI or a 16-bit displacement can be they are

used as offset for computing the 20-bit physical address. So, the so DS, SI and DI, so

these registers will find in the execution unit.

(Refer Slide Time: 15:10)

So, if you say like say if you want to get into this register AX content of say DS colon SI,

so what happens is that this DS multiplied by 16 DS register multiplied by 16, so that

that way it is getting it is giving me a 20-bit value with that this SI register content will

be added. So, you get a 20-bit address. So, 20-bit data address will be generated, so that

will be giving as the address for the data access. Similarly, the another register can it can

be used is that DI register destination index. And also you can mention displacement in

many other ways. So, you will be look into the instructions will see that there are many

other ways by which we can generate this offsets.

(Refer Slide Time: 16:01)

Next we have the stack segment register which is commonly known as the SS register.

This is the SS register. So, this is again the 16-bit register; it points to the current stack.

So, as you can so as you can understand that if I change the stack segment register the SS

register content then it can point different locations in the memory. So, as a result it is not

mandatory that in my memory that is only one step. So, different user programs may

have different stack segment, and they may be loaded, they may be accessed via the SS

register in a different fashion.

So, as an whenever we want to locate that stack segment, so you can locate you can load

the SS register accordingly to go to that stack segment. So, it is a 16-bit register, it points

to the current stack. And again the same thing that the 20-bit physical address will be

computed by this stack segment register plus the stack pointer SP for the push and pop

instructions like you can have instructions in 8086 like this. So, you can have a

instruction like push AX. So, what we want to do is we want to set the register AX into

stack. So, what address it will be pushed, so that will be determined by the segment

register content multiplied by 16 plus the stack pointer register. So, there is a stack

pointer register available in the execution unit of the of the of this 8086, so that value

will be added with 16 with 16 to SS and that will give me the address where the AX

content will go.

And there is another register which is known as the base pointer or BP. So, this is also

used for some cases some instructions in the in a particular address mode which is called

base addressing mode. So, there it will be using this stack segment plus this base pointer.

So, in this case, what will happen is suppose I want to get the content of this location

pointed to by SS colon BP. So, we can we can have instructions for that purpose. So,

again the same thing that is 16 into SS plus the BP, so that particular memory location

will be accessed and that content will be passed to AX.

So, this is useful whenever you are using this stack for parameter passing type of

application like what happens is that suppose I have got a procedural P 1 and this

procedural p one has passed some parameters abc to some procedural P 2. So, it has got

this abc here. And in the code of P 2, so we are trying to ge[t] access this abc. Suppose

we are trying to get the into the AX register, we want to get value of a that we have

passed.

So, how to do this thing? So, you need to in case of 8085 we have seen that we have to

explicitly use this push pop instructions to pop out the corresponding parameter from the

stack, and then do the operation. Here that is not necessary. So, here you can in the stack

segment, we have got this abcs all this parameters we have pushed so that we have

passed, so they are they are in the stack segment register and they for in into the stack

segment in the memory. Now, if the stack segment register SS points to the top of this

when the SS colon 0 is the a, then SS colon 1 is b, SS colon 2 is c etcetera.

So, you can initialize this BP the base point at two say one and then you can say AX gets

SS colon BP. So, what will happen SS one means so it will be accessing this b so as a

result AX will be getting the value B. So, this can be done fine. So, we will see this

technique when the parameter passing is looked into this based addressing mode looked

into. So, you see that the data access in this case is not by the data segment register, but

by the data segment register, but by the stack segment register.

(Refer Slide Time: 20:05)

So, another register, another segment register has been provided which is called extra

segment register. So, this extra segment register it is sometimes useful because we may

have instead of having a single data segment, we may have two data segment. So, if this

is a memory, if this is the memory, so in the memory I may have two different data

segments. And maybe this is one data segment, so let us call it say DSEG data segment

1, data segment 1 and this is a another segment which we call data segment 2.

Now, since we have got a single data segment register so DS may be made to point to the

beginning of this segment. Now, if you want to transfer some data from here to here, then

how to do this, this is very difficult because you see whenever you are accessing data.

So, it will be doing like DS colon offset. So, it will be doing DS colon offset. So, within

a single instruction, you need to change this segment register value, so that is not

possible because for changing this segment register value, you have to first move some

value to DS. So, one possibility may be that you move the content of suppose I want to

get the content of this location content of this location copied to this particular location in

this new segment. So, one possibility is you copy it to some code segment part then from

code segment copy in two steps you do this thing, but that will be difficult.

So, instead of that what facility that is provided is that DS let DS point to this. So, you

have got another segment register ES which is pointing to this other segment that that is

why it is treated as an extra segment. So, this extra segment register is there and again so

this an extra segment in which another 64 kilo byte of memory can be accessed. So, so

this string instructions they have got this type of application, but in general I can say like

say move AX comma say ES colon DI. So, we can have instructions like this, so that

way this EX either EX extra segment register divided by 16 plus DI, the content of that

particular memory location will be come into the AX register. So, this has got particular

usage in the string instructions that we will see later, but otherwise also you can use this

extra segment register.

(Refer Slide Time: 22:52)

 Then the instruction pointer registers, so this is a 16-bit register it points to the next

instruction to be executed within the currently executing code segment. So, at the

beginning, code segment register has been made to point to the beginning of the segment

and the IP register content is made zero, so that in successive instruction whenever one

instruction has been fetched, this IP valve is updated and CS value remain same the IP

value is updated, so that it can go to the next instruction without affecting the CS register.

So, this register contains the 16-bit offset address pointing to the next instruction code

within this 64 kilo byte of code segmented area. And its content is automatically

implemented as the execution of the next instruction takes place. So, this is very much

possible this automatic incrementation, so this is very much possible because we have

got dedicated adder in the bus interface unit. So, you can use that error for doing this

interface addition without affecting the ALU that we have in the execution unit.

(Refer Slide Time: 24:04)

So, the next important component in the bus interface unit we you have is the instruction

queue. As I said that there is six byte instruction queue and each of this location is 8-bit

wide and there are six such queues. So, you remember in case of 8085 we had one

instruction register or IR. And I said that whenever the instruction is brought from

instruction is brought from memory into to the CPU, so this instruction is coming to the

instruction register.

So, here that has been taken one step further like since the many a time what will happen

is that this execution unit, so this will be busy do I executing some instruction. And while

it is executing the instructions, it may not be using this bus, because it may be doing the

register operations here the maybe it is all operands in the register, so that way it does not

need to access the bus. So, this address this bus interfacing unit instead of waiting for the

current instruction to be over, so it can ask to get the next instruction next bytes of the

program from the program memory. So, this is exactly what is done. So, instruction

queue the instruction surface and they are kept in first-in-first-out order.

So, this is a first-in-first-out queue in which or the FIFO queue in which the up to 6 bytes

of instructions code are pre fetched are fetched on the memory at a time, ahead of time.

So, we will see that many of the instructions of this 8086, they can go up to 6 bytes, so

that is why this number 6 has been taken, so that if the six bytes are faced that means, at

least definitely one complete instructions is available in the queue. Now, of course, there

are instruction which are smaller than 6 bytes, so that does not matter, but this it will

always try to fill up this six byte queue. So, this is done in order to speed up the

execution by overlapping the instruction fetch and execution. The fetch and executes so

they are overlapping when it is internally doing the execution part. So, we can have this

fetch part, the fetch part going on through this bus.

So, this way we can have this instruction. So, this is this is that pipelining because that

we have shown previously that between the fetch decode and execution there is a

pipelining. So, here the pipelining has been taken a bit ahead we can say where this fetch

is having a 6 byte pre fetch of this instructions from memory.

(Refer Slide Time: 26:53)

So, next we will look into this execution unit part. In the execution unit, so the

responsibility is to decode the instruction and execute it. So, there is a decoder in the

execution unit that is the control system this control systems of this the decoder. So, from

this instruction queue, it will get the successive bytes, and it will go do this internal

control system. So, it will be determining the control sequence as we have seen in 8085

also at different clock steps the signals are to be generated. So, it will be doing that, it

will be generating those internal signals for different clock cycle. And accordingly it will

be activating this registers, this ALU, and this bus this the (Refer Time: 27:39) will

available on bus etcetera and that way it will be doing the operation.

So, this 16-bit ALU has been provided. So, this ALU is 16-bit whereas, this adder that

we have in bus interface this is 20-bit. So, there is a difference. This is 16-bit and that

one is 20-bit. So, this 16-bit ALU for performing arithmetic and logic operations then

this there are registers we have got general purposes registers AX, BX CX and DX. So,

these registers are 16-bit registers, and they can also be thought about to consisting of 8

bit pairs, like AX is can divided into two registers and AL of eight bit each, BX can be

thought about two bit two bit registers BH and BL. So, they can be accessed either as 16-

bit registers or two eight bit registers.

And there are some more 16-bit registers the stack points are SP the base point are BP

and the indexed registers SI and DI. So, SI stands for source index; and DI stands for

destination index. So, this SI and DI instruction they are very much used for string

manipulation, and this block transfer of data. So, some of this as I said some of this 16-

bit registers can be accessed as two 8-bit pairs that we have seen and this SI, DI. So, this

source index destination index, so they are also useful for transferring the content of a

portion of memory to some other portion, the multi byte data movement, so that the for

that purpose also this SI, DI are utilized.

