
Microprocessors and Microcontrollers
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 48
ARM (Contd.)

So, next, we will be talking about exceptions in ARM.

(Refer Slide Time: 00:19)

Now, in as far as exceptions are concerned so, we can have the situations which are not

occurring in the normal execution of programs. So, when the programs are executed like

computations and all that they are not occurring, but these are some um extraordinary

conditions, ok. So, in it is a while discussing about 8085 and 8051 we are talked about

interrupts. So, this is basically same as those exceptions that we call here. So, they are all

exceptional situations.

So, they can occur from various different situations like one is that through execution of

instructions; so, some instruction is executed and as a result exception has occurred, like

the software interrupts. So, we have got this SWI instruction or for Intel familiar

processors we have got 8085 we have got RST instruction 8086 there is another

instruction called INT.

So, those instructions so, they are called software interrupts and when they occur some

special way service has to be invoked. So, the processor needs to switch from user mode

of op operation to some privileged mode so that this operating system for routines will be

running in that mode.

So, this is the, this is a software interrupt. So, this is one source another source is

undefined instructions; like when the processor is fetching instructions and executing

them. So, if it happens like that that opcode part the opcode part of the instruction that

the processor has got does not match with any of the known opcodes of the processor or

the coprocessor, ok. So, coprocessor means that many a times we have got some

additional processor that helps in executing programs like we can have some additional

processor which will be doing this say the floating point operation. So, whenever that

floating point operations are found so the task is given to the coprocessor. So, we will see

those later.

So, this und[efined]- this undefined instruction means they are in the instruction opcode

that it has got is neither the opcode of the processor nor the opcode of any of the

coprocessors that it may have. So, that is one condition another condition is memory

abort, like memory abort means it is trying to get the content from memory, but say the

memory location is not available.

So, this happens that in system though I have got say 32 bit address bus so, I may not

have that much of memory available in the system. So, as a result when it goes beyond

that limits so, it is there will be memory fault.

There can be side effect of instruction like data fetch failure, like if we are trying to fetch

some data so when one of the operand is the memory operand we are trying to get the

data from the memory location and that memory location is not within the address space

of the processor or the particular memory address is absent the memory chip is not there.

So, this type of situations there is a data fetch failure other sources which are actually the

interrupt sources like the reset button that we have the reset pin that we have in the ARM

processor or the FIQ pin IRQ pin so, if we are activating those pins there we interrupts

and as a result so, these are the other sources for this exception.

So, for all these exceptions so that it happens like this is a processor switches to

privileged mode. So, from user mode so, it will go to the privileged mode either it will

go to system mode or it will go to say one of this FIQ mode IRQ mode like that. So, here

there are six different mode that we have seen previously. So, it will go to one of the

privileged mode. Current value of PC plus 4 will be saved in the link register so, current

value of PC plus 4 that is that in the next instruction. Every instruction is 4 byte long so,

the plus so, it will be this next instruction address will be saved in the link register.

Then the CPSR register value will be copied into SPSR of that privileged mode. So,

there are several SPSR registers one for each mode of operation. So, this CPSR value

will be copied on to SPSR register. IRQ interrupts will be disabled, ok. So, and if the

exception is caused by FIQ then the FIQ interrupts are also disabled. So, you need to

enable the interrupts separately in the interrupt service routine to start to able to make

those interrupts again usable.

And, the program counter will be loaded with some exception vector address. So, in case

of ARM all interrupts are vectored interrupts. So, their addresses are fixed they are

defined by the hardware the target address where it will the ISR address is fixed. So, the

processor with the program counter will get that value and the exception execution will

start. So, this is the sequence of operations that occur when we are having exceptions in

the ARM processor.

(Refer Slide Time: 05:17)

So, next we see that the vector table so, as I said that all the all these exceptions they are

vectored interrupt they are they are vectored. So, this reset the mode it switches is to

supervisor mode and the program counter value becomes all 0. So, that is it comes to the

very fast location of the memory. So, from that location we can have the OS code for

loading the essential portions of the operating system from secondary storage to the main

memory. So, that is a reset mode.

Then there is one undefined instruction mode. So, undefined instruction exception if that

occurs then it branches to the address 044, ok. So, it goes to the address 4. So, you will

see that between 2 such modes so, we have got only 4 bytes. So, you can have only one

instruction in the in the vector location and unlike other processors like 8051 or 8085 so,

where we have got at least 4 to 8 bytes available so that the small interrupt service

routines can be held there itself, but in general so, that is found to be non working

solutions. So, most of the interrupt service routines that we have are more than 8 bytes

so, there is no point putting those only 4 putting only 8 bytes or so, in the between to

interrupt addresses vector addresses.

So, in case of ARM so, that has been that has been called discontinued and then what

happens is that you have in this 4 byte so, you can put a 4 words so, you can put a sorry 4

bytes or one word. So, you can put a jump instruction only. So, that jump instruction will

take you to the actual inter service routine. Then after undefined instruction we have got

the software interrupts SWI and if the mode is supervisor mode and the vector address is

8. So, all the software interrupts.

So, you remember there are there are 2 power 24 software interrupts that can occur in

ARM processor and for all of them the control will be coming to this particular address

8. So, from here we should go to the SWI service and there I should analyze the value of

n to figure out what which interrupts has really occurred so that this whole instruction is

available in the instruction register so, the from there it can see we can figure out like

which instruction which service has been asked for.

Then there can be prefetch abort. So, the during instruction fetch if there is an abort so,

the operation mode is abort mode vector address is C and in case of data abort that is it is

trying to access the data and it is not getting. So, data abort. So, in that case the address is

1 0 and then IRQ. IRQ interrupt has got this address 1 8 and FIQ or first interrupt it has

got the address 1 C. So, this is the distribution and we will see that this distribution it

also helps the op operation of this processor in some sense.

(Refer Slide Time: 08:30)

So, first of all this vector location 14 is missing. So, if you look into this after one 0 the

next address should have been 1 4, but that is not there. So, that is 1 4 is missing and it is

it is for a backward compatibility. So, with some previous version of ARM, so, if you

want to for keeping the compatibility, 14 is missing.

Another interesting thing to note is that you see we have got this FIQ interrupt which is

at location 1C and after that there is no other entry for the vector table. So, what happens

is in you can you can start this interrupt service routine from these address directly. So,

from once you onwards so, you can start writing the FIQ service routine. So, that will not

overwrite any other service interrupt services.

Whereas, if you for other cases for other interrupts so for say this software interrupt or

undefined instruction like that so, those ISRS so, if they start at this address they will

overwrite these locations of this vector table. So, as a result other interrupts will not work

properly other exceptions will not work properly, but for FIQ this is the last entry and

there is nothing after this. So, we can start this interrupt service routine from that address

onwards.

So, this saves time because otherwise other instructions so, other inter exceptions what

you have to do is put a jump instruction. So, every ISR code in though for those

exceptions so, they have got an overhead of one extra jump instruction. So, that way it

will take some more time for activation compared to the FIQ interrupts. So, we can see

that the FIQ interrupts are faster in ARM processor because of because of two reasons;

one reason is that we can have we can have this thing your interrupt service this ISR at

the exception address is the last one so, 0 0 that 1 C. So, the this FIQ interrupt is faster

because of two reasons one reason is that we have got we have seen that they have got a

separate set of registers the separate register set.

So, that is one reason and another reason that we have now is due to this highest address.

So, that jump instruction jump not needed at the beginning of the ISR. So, because of

that the FIQ is faster than other interrupts.

So, this helps in this helps in the operation like. So, we can have it is that critical

interrupts put into this you can have critical interrupts put into this ARM into this FIQ so

that we can get that service first.

(Refer Slide Time: 11:24)

Next we look into one program this is an example program for finding the maximum of a

set of numbers. So, that it is so, we first the R1. So, it will R1 register we first clear it.

So, that it will hold the largest number in it. So, you xor R1 with R1 and the result is also

R1. So, it will be ze it will be there. So, R2 register. So, I assume that the numbers are

stored in an array and R0 register points to the beginning of that block, ok.

So, it is assumed that the R0 register is holding the if this is the memory where this

values are there then the R0 register is pointing to the beginning and this block is ending

with a this R2 register. So, this R and R2 register is holding the count, like how many

numbers are there in that array, ok. Then, we first we compare R2 with 0. So, if R2 is 0;

that means nothing to be done. So, it will be over so, branch on equal to over.

Otherwise, it comes to this statement and in this statement it is LDR R3 within bracket

R0. So, the first number that you have is loaded into the R3 register then we compare R3

with R1, ok. So, R1 was R1 was R1 is holding the current maximum. So, we compare R3

with R1. So, it is assumed that all the numbers are positive if there are negative numbers

then of course, this algorithm may not work. So, it is you compare R3 with R1 and if it is

carry is there that means, if R1 is bigger then there will be a carry. So, we will be coming

to this loop test. So, otherwise this new number R1 is new number R3 is bigger so, we

move R3 to R1, ok.

And, then after that so, now, I should go to the next number and since these individual

numbers are 32 bit number. So, it is assumed to this R0 should be implemented by 4 so,

that we come to the next number. So, increment point are R0 then we reduce this R2 by

1. So, we reduce R2 by 1 and if it is not same so, branch on not equal to loop. So, if there

if this R we subtract R2 one from R2 and store the number in R2 and then if it is not

equal that is a 0 flag is set then this equality flag will be there. So, if branch are not equal

to loop so, we will come back to this point again load the next number and compare.

So, there can be different ways by which this program can be written and the objective is

also not to say that ok, we have to we have done a very good survey of this all the

instructions ARM, but we are trying to look into the features of ARM and the types of

instructions that are there, ok. So, this program is just an example on how to use those

instructions for doing some operation. So, next we will look into another program look

into another program.

(Refer Slide Time: 14:47)

So, you want to compare two null terminated strings. So, null terminated string means I

have got so, if the first string is say A, B, C the first string is A, B, C. So, they are stored

in successive locations A, B, C followed by a 0 this character is A character B and

character C and then a null character and the other string may be some X, Y, Z, W like

that and then 0.

So, this is the other string now while we have this type of thing this is 0. So, we have to

compare so, LDRB R3 R0 it is assume that R0 points to the beginning of first string. So,

if this is my memory and maybe in this region I have got the first string so, this is

pointed 2 by R0 and in this region we have got the second string which is pointed to by

R1.

So, we get a so, LDRB R3 within bracket R0. So, it will get the next character from

string one and LDRB R4 within bracket R1. So, it will get the next character of string 2

into R 4 we compare R3 with R4. So, if they are not equal then naturally they are not

same we just check whether the strings are same or not. So, if they are not same then we

come to this not same location and set this we said this R2 to minus 1 we said this R2 to

minus 1 to say that they are not matching.

If it is so, if they are same if the first two characters the both of them happens to be say a

then we compare with the next character. So, for that purpose R0 is implemented by one

R1 is also implemented by one they are now pointing to the next two characters of the

strings and then we again compare within branch 2 plus BAL is branch always. So, it

comes to this loop and it will again B moving the next character into R3 and next

character of second string on to R4 compare them.

So, if any of those characters are not same then this BNE not same this will be true. So, it

will come here and R2 will be getting minus 1 and if R2 is if any point of time we find

that the strings are not same we do not compare the remaining characters. So, we just go

to this just skip over the same part and we come to branch always over. So, if R2 is

getting minus ones after that we are coming to this point, the program ends or if it is

always same then we move this move R2 comma as 0. So, the R2 register gets the 0

value. So, if the strings are same then with R2 will get a 0, if strings are not same then

R2 will get a minus 1.

So, this is a comparison of these a this program will just compare between two strings

whether they are same or not. So, you can extend this program for to check whether the

strings are whether the strings one string is greater than the other and all that. So, those

types of checks can be incorporated.

(Refer Slide Time: 18:09)

So, next we will next we look into the advanced processors of ARM. Like as I said that

now ARM processors; so, they have been developed into the cortex family of processors

and this ARM cortex. So, it is divided into three different families, ok. So, one is the A

family cortex-A family, so, application. So, this is these are for the server or you can say

it is for the application processors so, for supporting their new operating systems and all

that. So, this is for basically computational jobs if you are there lots of computations a

server type of application. So, there this cortex-A series of processors are used.

Then for embedded processors and real time application, signal processing and control

application we have got R cortex-R series of processors and for microcontroller oriented

applications and processors. So, we have got this cortex-M series. So, this

microcontroller and system on chip type of application. So, this cortex-M series of

processors are advocated. So, for our discussion so, cortex-M processors so, they are

more they are close to our discussion.

(Refer Slide Time: 19:19)

So, we will look into those cortex-M processor. So, cortex-M processor so, the register

set is same that R0 to R15 as we have then the PSR program set register CPSR, SPSR is

there the good the since it is difficult to learn the complete assembly level programming

of cortex-M. So, what they have done. So, they have developed very good compiler C

compilers so, you can write your specification in the c language and then through this

compiler. So, you can generate the code for this cortex the processor cortex processor.

Then stack based execute exception model. So, whenever some exception occurs then

these values are saved into stack. So, the automatically this register values will be saved

and there are only two processor modes; one is the user mode and another is a thread

mode that thread mode or user mode. So, higher it will be user task will be executed and

the handler mode for o s tasks and exception. So, there are instead of that six mode so,

we have got only two modes and vector table will contain the addresses for those

exceptions.

(Refer Slide Time: 20:30)

So, so, in cortex-M3, so, we have got this non-privileged mode or the user mode and

privileged mode or the OS mode. Then this so, in the non-privileged mode this

application code will be running and this so and in the privileged mode we will have the

system call. So, when application code is running sometimes we make a system call. So,

it will go to the privileged mode or if it is the undefined instruction so, it will go to the

privileged mode.

So, the all the aborts interrupts and resets so, they are all handled in the privileged mode

of operation, ok. So, this is the supervisor or handler mode and this is the user or thread

mode.

(Refer Slide Time: 21:13)

For interrupt handling so, this has it has incorporated one special thing like we have got

one non-maskable interrupt. So, that. So, this is this NMI INTNMI. So, this is one non-

maskable interrupt that is supported and then we have got 240 prioritizable interrupts.

So, 1 to 240 prioritizable interrupts are supported and these interrupts can be masked ok.

So, unlike say your 8085 or say 8051 where we have got a limited number of interrupts

so, here the number of interrupts are really large and this is useful like, if you are having

some embedded application then there may be different devices connected to the system

and also so, you may need to have all these interrupts.

So, so, there are 240 such prioritizable interrupt. So, we can have this interrupts can be

masked also and implementation option selects the number of interrupts supported. So,

the original ARM code will tell that it will support up to 240 maskable interrupts, but you

can tell that in my system I do not want. So, many I want only say 20 of them.

So, naturally this NVIC module that is not nested vectored interrupt controller NVIC

module so, this is a part of this cortex-M3 processor now. So, you can simplify the

design of this NVIC, if the number of interrupts are less than the NVIC design it also be

will also be simpler and interrupt inputs are active high all are active high interrupts

going to the NVIC. So, this interrupt controller has been added in the M3 processor.

(Refer Slide Time: 22:55)

As far as the exceptions are concerned so, reset is there. So, that is power on or system

reset then the NMI non-maskable interrupt. So, this is the cannot be stopped or pre

empted by exception any exception other than reset. So, that INT, NMI line is there by

on which you can connect some non-maskable interrupt. Then the faults we can have

hard fault, we can have memory manage, we can have bus fault or usage fault.

So, this is the, these are the different types of faults that are that are there that have that is

recognized by the processor. So, default fault or any fault unable to be a to activate. So,

so we can we cannot operate I can handle that fault so, they are called hard faults.

Then memory management so, memory management processor they same some

violation the memory access there is some violation bus fault is prefetch and memory

access violation and usage for undefined instruction divided by0. So, while executing the

instruction some exceptional condition occurs. So, divide by 0 some the divisor becomes

0. So, as a result the division is undefined.

Then there is supervisory call SV call. So, these are the OS requests. So, we have got that

SWI instruction. So, they are mapped onto SV calls here. Then there is a debug monitor;

so, that will be handling this you can monitor the operation of the chip. So, and through a

debugger you can just check the values of those then the there is a pending supervisory

calls like pendSV. So, this will this will give you the pending supervisory call. Then there

is a SysTick interrupt, so, SysTick interrupt is for internal system timer. So, this is useful

like if you are willing to implement some software some timer in your program.

So, you do not need to do anything else you just use the SysTick interrupt from the M3

processor directly and there are external interrupts all those 240 interrupts that we have,

so, all of them can be utilized.

(Refer Slide Time: 25:04)

So, another very interesting feature that this ARM processor cortex-M3 has is the

conditional execution. So, it is the if then else type of instructions. So, if then instruction

added are it has 16 bit instruction up to 3 additional then or else conditions can be

specified, likes a let us look into this statement. So, this so, this statement it says that so,

INT INTT. So, this is if then.

So, you read it like this if then else then EQ; that means, the first instruction one will be

executed if the condition is true, so, if so, then. So, this then corresponds to the first

instruction, then the next then also corresponds to the second instruction. So, second

instruction will also be executed if that condition equality was true at this point. This

instruction 3 will be executed if the condition was false that is the else part and the last

instruction will be executed again if the condition was true.

So, in this way you can have up to 4, if then else, instruction. So, basically if so, if the

basic insta instruction is like move, add, sub and or the or then the these EQ since if the

first second and fourth instruction they were then part true part. So, for them we have got

the qualifier EQ and for the third instruction. So, this was else E part. So, it is not of EQ

so, that is NE. So, instead of so, this is similar to this block. So, we do not need to talk

about in a single statement or we can tell all these flags and then for the remaining

instruction. So, I need not tell it explicitly whether it is EQ or the flag conditions the

conditional execution flags need not be exi told separately. So, this helps in writing

programs where with the if then else type of constants.

So, any normal ARM condition code can be used and 16 bit instructions in block do not

affect condition code flags. So, they will not affect the condition code apart from the

comparison instruction. 32 bit instructions may affect condition flags; so, that is the

ARM instructions they will affect the condition flag. The current if then status is stored

in the CPSR resistant. So, conditional block may be safely interrupted and returned to

and must not branch into or out of the if then block.

So, that is so, you cannot take a branch instruction from here before completing this if

then else. So, you cannot have the third instruction as a branch out instruction or you

cannot just branch into a block. So, you cannot say that I will come to the mid jump on to

the middle of this block, so, that is also not possible. So, those are there.

So, this way these M3 pro processor so, it has got many interesting features and they are

many more features are there, so I would suggest that you look into this ARM manual for

their details, but whatever we do. So, that is actually the ARM processor is one of the

very powerful processors and it has got the advantage because we have got low power

consumption and it is quite powerful in the sense that it is comparable with many of the

high speed processors; that we have now with the limited amount of hardware

requirement because you can take only the essential parts and others can other may not

be taken as part of the processor.

