
Microprocessors and Microcontrollers
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 46
ARM (Contd.)

So, if we look into an example of this stack, like The first example is STMFD stack

pointer, then this exclamatory mark is there means it will be following that auto

increment, auto decrement mode either of them.

(Refer Slide Time: 00:20)

Then here I can specify the registers that I want to say ok, so this R0, R1, R3 to R5. So,

if this is the previous stack pointer, now, if it is, it is empty descending stacks. So, I

assume that the memory address decreases when I go towards the lower direction. So,

the our 0 is here, the 0 instead, address 0 is on this side and this side I have got the

highest address.

So, the stack pointer value now, is decremented and the values are stored here. So, this is

a full stack. So, it was pointing to the location till which it was having the value and now,

the new before putting the next value the stack pointer is decremented and the value is

saved here. So, that way it contains. So, new stack pointer will be pointing to this

because the up to this much the stack is full now. So, it will be pointing to this.

Now, if we are having say the STMED then the previous stack pointer was pointing to

the next empty slot. So, from that point onwards the values of the registers will be saved

and this stack pointer will be pointing to the next empty slot after doing this operation.

Then STMFA, this is it is it is also full ascending stack. Now, the previous stack pointer

was here. So, it is ascending stack.

So, stack pointer value will be incremented. So, it will be going towards the higher

addresses and then this it is full. So, this stack pointer will point to the last field entry.

And this one STMEA, this stack pointer value will be decremented it is going the

ascending direction. So, this is, this is this is the stack pointer value will be incremented

it is going the ascending direction this side I have got highest address this side I have got

lowest address. Now, these values will be saved in the corresponding locations.

Now, you see that in all the cases if you look into the pattern in which they are saved.

Now, everywhere I am writing like R0, R1, R3 to R5, but they are not saved in the same

order. So, you see that the in this if you look into this particular example then this the this

is the lower address and you see the R0 register has been saved at the lowest address,

then the R1 then R3 R 4 and R. Similarly here, R0 register has gone to the lowest address

and the R3, R 4, R 5. Whereas, in this case R0 register has gone to the lowest address

and this R the R0 it has gone to the lowest address and R5 has gone to the highest

address. So, in all the saving, it is following that convention that the higher order register

is going to higher order memory address.

And one beautiful thing about this processor ARM processor is that it does not matter in

which order you specify these registers. So, even if you write like say R3, R5, R0, R1, R

4. So, if you see if you simply write like this also then also the saving will be same as

this one because it will always follow that whatever be the lowest register. So, that

should go to the lowest address. Similarly whatever is this R0 is the lowest one. So, R0

will come here then R1 is the lowest R1 will come here. So, whatever be the order in

which you have specified here. So, it does not matter. So, it will be it will be taking it

will be say saving in that order

Similarly, whenever you are loading the value. So, if you are using this LDM instruction,

so LDMED instruction then whatever be the order in which you specify this registers it

does not matter the lowest order location content will be retrieved in to the lowest

register. That way the highest order content will be retrieved in to the highest register. So,

this is very much useful. I will take an example and try to explain like previously in 8085

or 8051 when we discussed about one ISR structure.

(Refer Slide Time: 04:42)

So, we said that if this is the body of the ISR. So, before that you need to save the

registers you need to save registers and after the body you need to restore registers or for

that matter if it is in any other procedure also any other subroutine also and that you need

to save registers and restore. So, we have to do it like this. And we have to be careful,

like if you have written here like say PUSH, PUSH H then PUSH D then while

retrieving. So, you have to first do a POP D and then a POP H.

So, you have to do it in the other directions of, so you have to follow the order in which

you have pushed it while popping. So, you have to POP in the other direction otherwise

the contents will be mixed up. So, if you do it do by mistake if you do here POP D, POP

H and POP D then the register values will be corrupted.

So, but many times what happens is that the programmers while writing their programs.

So, they do this type of mistakes and it they may not be following the order in which the

registers have been pushed and they forget to retrieve in the reverse order ok. So, this is

this is a very common mistake that has been detected for the assembly language

programmers.

So, what these ARM people have done? They have just got rid of this problem. How? It

does not matter. So, as we have seen here it does not matter in which order you have

specified this PUSH POP or these registers in this saving whatever be the order, it does

not matter. So, it will always take R0 as the lowest register that is specified here. So, it

will put it in the lowest address.

So, then it will find that R3 is the next lowest register. So, it will put R1, R 1 is the next

lowest register. So, it will put R1 as the next lowest address. Then it will find it will

analyze all this register and find R3. So, R3 it will be putting here, at the lower next

lowest address, this way it will do. So, it is irrespective of the order in which you have

specified it in this here. So, it does not matter.

(Refer Slide Time: 07:07)

So, after doing this, so if you are after some after this is STMFD, ED sometime later if

you have written like LDMED stack pointer and then in the register if you have written

like R5, R0, R1, R 4, R3. So, then also it does not matter it will be retrieving these values

properly onto those registers ok. So, that is the good thing about this ARM processor.

(Refer Slide Time: 07:41)

So, next we will be looking into that large block of data transfer like that moves

instruction that we have seen in case of that we know about if this moves instruction 80-

86 type of processors. So, here the instruction that will be useful are STMIA and LDMIA

which is increment after, then STMIB and LDMIB for decrement, for implement before

then STMDA and LDMDA decrement after and this is decrement before.

So, this is one example that I have taken suppose I have got a block of data and this

block of data is pointed to by R 12. So, R 12 is pointing to the block of data that we have

and source data. So, this is the source and we want to put it to this destination which is

pointed to by R 14. So, R 14 points to this destination and R sorry not here, R 14 a points

to the end of the block. So, R 14 is this one, R 14 is pointing to the end of the block and

R 13 is the beginning of the destination. So, this is R 13.

So, in this case, we have got this. So, this R0 to R 11 these 12 registers are free for this

data transfer operation. So, this LDMIA instruction, what I am doing? So, R 12 estimated

remark R0 to R 11. So, it will be copying the content from this locations pointed to by

R2 l into the registers R0 to R 11. So, each of these registers are 4 bite white. So, total 48

bytes of data will be transferred by this instruction from memory to the R0 to R 11

registers. After that it will be using one STMIA instruction.

Now, R 13 was pointing to the destination. So, it will be transferring the 48 bytes of data

from R0 to R 11 to the memory locations pointed to by R 13. And after every transfer

this value will be implemented R 13 value will be implemented because the

discriminatory mark is there.

Then we compare R2 l with R 14 to see whether we have reached the destination, if they

are not equal if the destination is not reached then it will go back to this loop and it will

do the next 48 bites of transfer. So, this way it will go on. So, but this is a very

preliminary type of routine you can see that it does not check for any overlapping of the

blocks, it does not check for any the data bites that you are transferring the data block,

may not be an integer multiple of 48. So, all those problems are there, but still. So, this

gives us some idea about how this large block of data can be transferred.

(Refer Slide Time: 10:34)

So, next we look into the multiplication instruction. So, multiplication instruction in

ARM processor that is a very very powerful you have seen that 8085 does not have any

multiplication operation. In case of 8051 we have got multiplication, but it is 8 bit

multiplication only and the instruction format is fixed. So, a and b registers they should

have the two operands and this MUL a b instruction. So, it was just multiplying the

numbers a and b numbers in a and b.

Now, in ARM processor this multiplication has got many variants like we have got

integer multiplication, which is 32-bit which will give you a 32-bit result, then there is a

long integer multiplication that gives 64-bit result and there is a multiply accumulate

instruction, for this multiplication addition, multiplication over arrays and all that. So,

the instructions that we have is MUL for 32-bit multiplication MULA for 32-bit multiply

accumulate and then this a UMULL. So, it is 64-bit unsigned multiply then UMULL, the

this second L is for long and this U is for unsigned and so this is the multiply

accumulate. So, typical examples are like this. So, multiply MUL R0, R1, R 2. So, R0

gets R1 into R2, MULA R0 R1 R2 R 3. So, this is an exception. So, is a 4 operand

instruction.

Whereas, in ARM in most of the instruction it is a 3 operand instruction this is a 4

operand instruction where R0 will get R1 into R2 plus R3. So, this is good because this

MULA instruction. So, this can be used for doing that operations like if I have if I have

got this y equal to sigma a i x i. So, what I can do I can allocate this y to say R3 and then

this a i to these R1 registers and x i to R2 registers and then I can do this MULA and then

after that we move this R0 register value to R3 register.

So, that way I can do this multiply accumulator I can utilize this multiply accumulate to

for doing this multiplication and addition simultaneously.

(Refer Slide Time: 13:00)

So, the next instruction that we will have is this some restriction on the multiplication

instruction like distribution and source they cannot be the same register. So, this is

something very interesting because, may be that this destination register. So, the source

register will get modified during the operation. So, as a result if you are using it as

destination also then it the register may content will get corrupted.

So, we will not get the correct value. So, this destination and source cannot be same

register then this are 15 register the program counter it cannot be used for multiplication

purpose ok, the R say the program counter cannot be used and it uses Booth’s algorithms.

So, Booth’s algorithm is a well known multiplication algorithm. So, you can get it into

computer architecture books. So, this is a multiplication algorithm. So, that is quite

efficient.

And here for each pair of bits it takes one cycle. So, and one more cycle is needed to start

the instruction. So, it is like this that if I have got say one 32-bit number, if I have got say

one 32-bit number two 32-bit numbers to be multiplied then for each pair of bits. So, it

will take one cycle. So, it is, this is these are the pairs of bits. So, we will have 16 such

pairs there will 16 such pairs.

So, that will take 16 cycles plus one cycle will be needed for starting the instruction so

that way this multiplication will take 17 cycles. But there is another interesting thing

which is known as early termination, so this is the early termination. So, what is it? It is

like this that whenever the content source register content becomes 0.

(Refer Slide Time: 15:02)

Like say if we are say multiplying, if you are multiplying two numbers and if you see

that the numbers are say 4 multiplied by say 5 something like that. So, 4 is in the source

register. So, it is 1 0 0 and these bits are all 0. So, when I do grouping, I do a grouping of

these two bits, these two bits then after that I find that, after these two bits have been

processed. So, this whole thing is shifted and I see that the register is the source register

that contained 4 initially is no more is not yet is 0 ok. So, it is still having the value one.

So, next time, this will be shifted next time. So, the once this shifting is done. So, 0 1

comes to the least significant two positions.

Now, I will be. So, I will do that multiplication with this 0 1 of that 5 and then it will be

shifted further. So, this 0 1 will go out of the register and the source register content will

become 0 and when the source register content becomes 0 there is no point trying to do

multiplication with 5 and generate this partial multi, partial sums to be added finally, ok.

So, that way the algorithm will terminate. So, it will not continue once that source

register content becomes 0 and so that leads to the condition called early terminate and

that helps in speeding of the multiplication operation.

So, this is a typical example say suppose we want to multiply 18 by minus 1. So, if we

take 18 as the source then it will take 4 cycles because 18 is so this is say, this is the

number 18. So, this is the first 4 is the next 4. So, it is like that. So, rest of the bits are all

0.

(Refer Slide Time: 16:39)

And I am trying to multiply it by minus 1. So, for minus one all these bits are one all the

bits are one. Now, if you are using 18 as the source register then first for these two bits.

So, it will take one cycle then for this one it will take one cycle and for these two bits it

will take one cycle. After that the source register will become 0. So, this takes 3 cycles

plus 1 cycle to start the instruction. So, total 4 cycles will be needed if 18 is kept as the

source.

On the other hand if you take minus 1 at the source that is you try to do this

multiplication minus 1 multiplied by 18 then for this minus 1 all the bits are one. So, it

will take total 17 cycles as we had calculated previously for every pair it will take one

cycle the 16 such pairs plus one cycle to start the instruction total 17 cycles will be

needed for doing that multiplication operation if minus 1 is taken as the source.

So, here the compiler has got a role to play. So, whenever it will find that it is

multiplying by some constant. So, it can try to see how many how many cycles will be

needed if that constant is taken as the first operand, and if that number is profitable then

it will be putting that constant as the first operand otherwise it will put the variable as the

first of all or if it is multiplying two constants. So, it can do that way. So, it can it can put

one of them as the first operand whichever will require less number of cycles.

(Refer Slide Time: 18:36)

Next we will look into the software interrupts instructions. So, it forces the CPU to the

supervisor mode. Now, in case of software interrupts the instruction format is SWI hash

n and it causes an exception trap to the SWI hardware vector. So, we will see what is this

vector address ok. So, before going into this, we need to look into this software interrupt

concept a bit more ok.

(Refer Slide Time: 19:13)

So, as I said that this software interrupts, so they are generally available as they are the

software interrupts in case of say Intel family of processors. So, the corresponding in

instruction is INT ok. And the format is here is INT and the number in where this n is a 8

bit number, is a 8 bit number ok. So, in a program, in a program, if you are writing a

program somewhere you can put like. So, INT x where x is an 8 bit number and then this

x will be the multiplied by 8.

So, this x will be multiplied by some 8 and accordingly it will be jumping to one

particular address where this service routine will be there. So, that is the interrupt service

routine. So, the for the software like this INT instructions. So, they are useful for waste

services as I said that it is normally useful for operating system services. So, in a

program whenever you are willing to get service from the system, so you have to use this

INT x instruction.

So, typically for example, suppose I am I have a program P and after executing for some

time it needs to read from keyboard read from the keyboard device. Now, how will it

read. So, the OS designer they have they will tell you that for reading for this keyboard it

is available as INT say 5, ok. So, if you put INT 5. So, it will invoke that read from

keyboard service and at the end of this the keyboard the value that the user has pressed

that key value will be available in some particular register say R5, R5 the R5 register will

have the key.

So, what you can do? In your program, when you when you have got to read from

keyboard, you can translate it into one INT 5 instruction and then on getting when you

return from this interrupt you know that the R5 register will have the key value. So, you

can check the R5 register to see which key has been pressed by the user. So, that way

you can have it. So, that whenever you need any OS services normally the operand

operating system designer. So, they have will provide you a list of such services

available from the operating system and they will be specified as this INT in this address

will be specified there and you can you can use it in your program.

Now, in case of ARM processor, we have the similar thing and these services. So, as I

said that n is an 8 bit number and this in case of processor in case of say 8086 type of

processor then the address bus. So, address bus is twenty bit and then this 8 bit number.

So, it can point to some fixed memory locations. So, it will it is it is not arbitrarily

distributed.

So, it is multiplied by 8 and there those locations will be this. So, INT 0 it will be coming

to the location 0, INT 1 will come to the location 8, INT INT 2 will come to the location

16. So, that way it will go. So, there are fixed memory addresses where this location. So,

these are actually the vectored interrupts, so whatever be the value, it will be coming to

that location and it will be taking it from there.

So, the maximum value that I can have with this x is 255 because it is 8 bit number. So, it

is 255. So, 255 multiplied by 8, it can you can have up to that much address dedicated for

this in vector table. Now, in case of ARM processor what has happened is that we have

increased this range ok. So, this range is increased. So, this SWI n, this n can be any of

the 24 bits. So, n is a 24 bit value. So, instead of that 8 bit value; now, n is a 24 bit value.

So, if it is a 24 bit value.

So, we can have 2 power 24 different OS services each of this service is called a system

call. So, we have got 2 power 24 different services. So, that is good because I now, I can

implement large number of system calls in myself in my operating system, but that

difficulty is that for each of these 20 2 power 24 system calls we have to have the

corresponding memory address if the address bus is assumed to be even say 32-bit

address bus. So, in that case also, so the 32-bit address has to be specified. So, total I will

require. So, for each of these I will require 4 bytes of memory space to hold the

corresponding vector address.

So, to power 24 multiplied by 4. So, 2 power 26 memory locations 2 power 26 bytes of

memory location will be needed to just hold the vector table just to hold the vector table.

So, 2 power 26 memory locations will be needed and this is a huge number ok. So, this is

your this is a 64 MB of space so that will be required just to hold the just to hold that

memory address. So, that is not that interrupt vector address. So, that is not advisable.

So, what this ARM people have done? They have done they do it like this that, they will

they will not go to different addresses whatever be the value of n that you have specified

here it will not go to different address it will go to the same address for all these 2 power

24 determinants system calls the hardware will come to the same address and in your

software you need to differentiate between those values of n and from there you call the

routine.

So, the processor gets interrupt and it comes to the same address from that point it is the

interrupt service routine the it is responsibility is to analyze the value of n and

accordingly decide to which call which procedure should be called. So, based on the

service request the value of n is used to differentiate between the service procedure to be

called. So, processor will completely ignore the value of n because it cannot handle such

a big thing. So, that is about the software interrupt.

(Refer Slide Time: 26:15)

Conditional execution, so I have already introduced it. So, that ARM it will allow

instructions to be executed conditionally, most significant 4 bits they can used of each

instructions they are deserved as condition code. So, we have got this say R0 equal to R1

plus R2 only if the 0 flag is set. So, the EQADD, so EQADD this EQ part, this will tell

that addition will be done only if the EQ the 0 flag was set. So, this way this conditional

execution it is helpful. Like if we have got a number of instructions and if you have got a

number of condition checks and conditional execution.

So, you can use it and that way we have seen that it can be utilized to reduce unnecessary

jumping in the program. So, that this conditional execution leads to straight line type of

code which helps in the pipeline execution of programs.

