
Microprocessors and Microcontrollers
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 45
ARM (Contd.)

So, the data processing instruction that is a first category of instructions that we have for

ARM; So, we it supports arithmetic large number of arithmetic operations, like addition

subtraction and multiplication.

(Refer Slide Time: 00:25)

So, one thing that you note here that division is not supported. So, that may be taken as a

disadvantage, but the problem is that supporting division. So, the division algorithm has

to be implemented and that way the architecture will become complex. So, if you really

need division then you can possibly do it using software and many cases we may not

need it. So, multi this was addition, subtraction and multiplication. So, these are the 3

instructions that are supported and the multiplication has been made every powerful so

that we will see that. And that that takes care of this division operation a to some extent.

Then the bit wise logical operation, that is there. So, we can do logical operation then all

operations they take 2, 32-bit operands and return one 32-bit value. So, the internal phase

is 32 processor, so it all the operations around 32-bit data. First operand and the result

must be register. So, this is the important thing that to the first operand that must be a

register and the result must also be a register. So, that is why it is a register type of

architecture. Then the second operand it can be a register or it can be an immediate value

and if the second operand is a register it can be shifted or rotated before sending to the

ALU. So, the first operand is register, and the second operand can be register or

immediate. So, if it is a register the value will be taken from the register directly if it is

an immediate operand. So, that way the value will be available in the instruction opcode;

in the instruction itself. So, the value will be taken from there and if for registers, so you

can do this shifting rotating like that

So, that you remember that there is a barrel shifter and it is connected to the register file.

So, from there it will be when it is coming. So, it will be taking that register, the register

value will come to that barrel shifter and that barrel shifter will be shifting the value for

coming in the from coming from the register. So, that way we can have this shift

operation as a part of it.

(Refer Slide Time: 02:34)

But if this second operand is an immediate operand then the immediate operand must be

32-bit value. So, they must have a 32-bit value. And naturally we have a catch here

because the instruction itself is 32-bit and then I am telling that the immediate operand

should also be 32-bit. So, it is like this suppose I have got an add instruction. So, I say

that add R1 comma say some 32-bit value say 25 hex, and the result be stored in R2,

meaning R2 will get R1 plus 25 hex.

Now, you see that whole instruction is 32-bit the coding of this whole instruction is 32-

bit and it says that this immediate operand is 25 hex. So, this should also be coded as a

32-bit instruction, 32-bit numbers and that is a problem ok. So, it naturally you cannot

represent all the numbers in this 32-bit value and it what it what this arm people have

done. So, they have allowed only a category of 32, 32-bit numbers that can be used as

the second operand, how let us see.

So, all 32-bit constants cannot be specified. So, the numbers which are allowed then all

binary ones must fall within a group of 8 adjacent bit positions and on a 2-bit boundary.

So, what does it mean? Is like this, we have got this thing.

(Refer Slide Time: 04:06)

Suppose this is the 32 number that I have got and in that number this is bit number 0 this

is bit number 31. So, all this bits sets as 0 in between you have got a block ok. So, if you

mark the left most occurrence of 1 and the right most occurrence of 1 ok, in between the

bits may be 0 or 1 whatever. So, this should be 8 bit this should be 8 bit.

So, the number the 1’s should be distributed in a block of 8 bits and this block it cannot

start at arbitrary point. So, it has to be at 2-bit boundaries. Like it can start at location 0,

but it cannot start at location 1. So, it can start at location 2. So, like that it can go. So,

this start point and end point. So, they are they should be some multiple of 2.

So, only those type of numbers. So, will be able to represent and how this can be done.

So, if we just look back it says that a valid immediate operand n. So, it is like this i rotate

right 2 into r, where i is a number between 0 and 255. So, it is an 8 bit number. So, this is

between 0 and 255 this is between 0 and 255, and this r is between 0 and 15. So, if it is 0

and 15. So, it is rotate right by up to it can be 0 bit to 30 bits.

So, up so many positions it can be shifted, but this r value r can be equal to 0. So, in that

case no rotation r equal to 1, it is rotation by 2 bits r equal to 2, so rotation by 4 bits. So,

you see that it is getting shifted by the even boundaries. So, it you cannot have the

number in odd boundaries.

So, this for example, the number 255, so 255 you can represent in this format because I

you can take i equal to 255 and r equal to 0 that is fine. Similarly you can also represent

256 because I can take i equal to 1 and r equal to 12. So, if I take i equal to 1 and r equal

to 12 then what will happen is that. So, this i equal to 1, number is so, if I if I take the

number, it is 0 0 0 0, 0 0 0 0, 0 0 0 0. So, this way ultimately 0 0 0 1

(Refer Slide Time: 06:34)

And I am rotating it right by 24 bits. So, it is 2 into r, 24 bits. So, I will be rotating it like

this. So, if I rotate it then this 1 will come to the position. So, where it is 1 then there will

be 0 0 0 0, 0 0 0 0. So, this is the number 256 and all this bits will be 0. So, you do the

rotation and see that it will be a number like this ok. So, this will be this is the 32-bit

number and here this bit number 9 will be 1 and all other bits are 0. So, this way we can

represent the number 256 in the in this particular format fine. So, all those numbers that

can be feted into this particular representation, they will be allowed as immediate

operand others are not. Now, why is it why is it useful?

(Refer Slide Time: 07:44)

So, it is like this that, many times what happens is that for embedded application. So, we

have got say the ARM processor and we are getting some signal value from outside

walled. And this outside walled value, so many of the cases they are only 8 bit values,

though internally I am doing some 16-bit processing, and 32-bit processing and all that.

So, when we are taking values from the outside walled in terms of say this a d c analogue

digital converter or values of some digital switches and all that. So, if I taking the value,

so in many cases the values are only 8 bit wise

So, it is sufficient that I put, so in this in this 32 notation these 8 bits will be located in a

in a in a fixed position ok. So, this 1’s a rest of the positions are not meaningful when I

am getting this 8 bit data from the outside wall. So, in many cases, this is sufficient, this

is this is good enough ok. So, you do not need to have 32-bit constants and so this is so

far it is done like this that we have got this notation; and if you badly need more number

of bits like the numbers that are not fitted into this category.

So, for that purpose you have to somehow load that number into some register you can

you can you have to keep that constant in a memory location from the memory location

you have to load into a register and after that you do the register operation as it is. So,

there is no bar in that. So, you can always do that. But if you are willing to use as

immediate operand then we have to follow this convention ok.

(Refer Slide Time: 09:23)

So, next we see that they the modification other thing that we have the modification of

the condition flag by the arithmetic instructions that is optional. Like the ADD

instruction we have got two variants ADD and ADDS; So, this ADD instruction, ADD

R1 R2 R3. So, this will ADD R1 equal to R2 plus R3. So, R2 and R3 are added and this

is coming to R1. So, the operand format we have is after the opcode we have got the

destination then the first operand then the second operand. So, all instructions will follow

this particular format.

Then the next instruction say ADD R1 R2 R3 LSL hash 2. So, this is basically the case

when where the second operand happens to be a register and it is left shifted by 2 bits ok.

So, this the overall execution is R1 equal to R2 plus R3 into 4. So, R3 will be left shifted

by 2 bits, so it will be multiplied by 4. So, R1 gets R2 plus R3 into 4. So, these two

instructions, these two add instructions they do not affect the status flags or the condition

flags.

Whereas, this ADDS instruction, this will affect the condition flags like ADDS R1 R2 R3

LSL hash 2. So, this will be doing this same operation as R1 equal to R2 plus R3 into 4,

but at the same time it will set the condition flags also. So, depending upon the result if

the result becomes 0 then the 0 flag is set, so N Z C V. So, those flags were there. So,

those flags will get affected.

So, since this is since this setting is optional. So, I have the flexibility like if some

instruction sets the flag suppose this instruction sets the flag. So, I do not need to check

the flag here. So, I can check this flag setting in some other instruction provided the

intermediate instructions they are all of this category they are of type add type of

instruction. So, they are not having this S in them, they are not affecting the condition

flag. So, these are the data processing instructions.

(Refer Slide Time: 11:33)

Then we have got the data transfer instructions. So, the first category that we have is the

data transfer instructions for transferring 1, 2 or 4 bytes of data between a register and a

memory location. So, we can have 1 by data transfer, 2 by data transfer or 4 by data

transfer. So, total words size is 32-bit. So, you can have this 4 byte data transfer. So, base

plus offset mode can also be used.

So, you can specify a base and then offset and then that way you can specify the address

pre indexed post indexed modes are also there. So, you can have we will take some

example. Now, this offset can be 12 bit unsigned immediate value or a register shifted by

another immediate value, I will I will take some examples.

(Refer Slide Time: 12:21)

So, like this LDR, so LDR instruction is the load register LDR stands for load register

load register R0 within square bracket R8 means this register 0 will get the content from

memory location R8 ok. Then we have got this is the this is the this is the indirect

addressing, then we can have this base plus offset type of addressing like LDR R0, R1

comma minus R2. So, R1 is the base address R2 minus R2 is the offset. So, this offset is

added and then this is content of that memory location will come to the register R0.

Then we can have this offset as some immediate value also say R1 hash 4. So, R0 gets

content of memory location R1 plus 4. Then we can have post increments, so this

exclamatory mark, this identifies it as it as post increment. So, R0 gets may content of

memory location R1 plus 4 and simultaneously R1 will be incremented by 4. So, this is

the post increment mode ok. So, it is base offset plus post increment.

So, you can have something like this that you can have this LDR R0 within bracket R1

comma hash 16 this is another way of writing this. So, here R0 gets content of memory

location R1 after that R1 is incremented by 16 ok. So, this these are the different

instruction formats that are available in arm for the LDR instruction.

(Refer Slide Time: 13:54)

Next we will look into the other instruction like STR. So, these are the variants. So, LDR

is for loading and similarly STR is for storing. So, just the other way, SO you can say the

STR some register to some memory location. So, content of that register will be stored in

the memory location.

Then the variants like LDRH load half word then STRH store half word, then LDRSH

load signed half word, then store signed half word LDRB load byte, LDR STRB store

byte. So, these are the various instructions that we have in load and store variants.

(Refer Slide Time: 14:33)

So, this slides, this will explain the difference between this big-endian and little-endian

suppose we have got this register R0 it Is a 32-bit register. suppose its content is a

hexadecimal 10, 20, 30, 40. So, they are distributed the bytes are distributed like this. So,

4 0 is in bits 0 to 7 and 10 is in bits 24 to 31. So, we have got this highest order byte in

highest order portion of the register and the lowest order byte in the lowest order position

of the register.

Now, suppose we are executing this instruction STR are store R0 comma within bracket

R1 where R1 value is 0 x 2 0 0. So, in this 0 x 2 0 0 that location, this is again a 32-bit

location then this if it is big-endian format then this higher order byte will come to the

lowest address then 2 0 goes to the next one. So, this is the first byte. So, it goes to this

location 2 0 goes to the next location.

So, you see ultimately this lowest order byte. So, it has come to the highest order portion

of the memory. So, if your memory is organised as 8 bit word then this is the this is the

lowest address word and this is the highest address words. So, that way the lowest order

byte has gone to the highest order memory location. So, this is this is the big-endian

format.

On the other hand if it is little-endian format then this lowest order byte will go to the

lowest order address and this highest order byte will go to the highest order address like

again the same thing if it is byte organised memory then this 4 0 will go to the lowest

address 3 0 to the next one, 2 0 to the next one, and 1 0 to the highest address. So, that

way it will go.

So, as such there is no difference like as long as you are reading and writing as words 32-

bit words. So, there is no difference between the two, but if you are doing a byte loading

like say this instruction LDRB load byte then R2 register I will I will be loading the

content of the memory location pointed to by R1.

So, in this case R1 is pointing to the byte containing the value 10. So, 10 will be loaded

and in the little-endian format. So, this R1 will be pointing this location two hundred will

have the value 40. So, the 40 will be loaded into R2. The difference will come at this

position, otherwise if you are reading writing word at word level then there is no

difference.

(Refer Slide Time: 17:12)

Next we look into this block data transfer type of instruction and they are known as load

store multiple instruction LDM, STM. So, this LDM, STM instruction, they are actually

the variant of that MOVs instruction that we have in 8086 type of processor as I was

telling. So, you can transfer between 1 to 16 registers to or from memory. So, I will take

an example then I will come back to this ok.

(Refer Slide Time: 17:41)

(Refer Slide Time: 17:43)

(Refer Slide Time: 17:48)

So, say this one say suppose I want to transfer say for some data. So, this instruction this

LDMIA, it will transfer 48 bytes of data because R12 base pointing to the block where

the source data starts. So, this they will be loaded into this R0 to R11 registers total 48

bytes, them this STMIA instruction.

So, it will be storing the values on to the location pointed to by R13. So, this way I can

load store higher sized blocks on to this transfer between CPU register and the memory

blocks.

So, this transfer registers they are any subset of current bank of registers or any subset

user bank of registers in a privileged mode of operation you can use base register auto

increment auto decrement etcetera. So, this is the thing that is it can be utilised for

implementing stack and moving large blocks of data around memory. So, in arm

processor we have I have told that the stack is not there by default.

So, if you are willing to implement a stack, so you can use this load multiple and store

multiple type of instruction for implementing a stack. So, we will see that. So, if you as

per as the stack circumstance, so there can be different variants of the stack, like say like

this. So, if this is the memory on to which I am trying to implement a stack so I can say,

so if this is the lowest address. So, this is the address with 0 0 0 0 and the address

increases in this direction fine.

(Refer Slide Time: 19:27)

And I have got this particular address from where the stack will start and these address is

say 1000, fine. Now, my stack may be when I am doing a push operation. So, it grows in

this direction. So, stack pointer value after the first push the stack pointer value become

999, then after the second push it becomes 998. So, it grows in this direction fine. So, it

grows towards the lower address ok.

So, it grows towards the lower address. Other possibility is that it grows towards the

higher address. So, may be after my stack grows in these directions. So, initially the

stack pointer was 1000, after the first push the stack pointer will become 1001, after that

the stack pointer will become 1000. So, it will grow in this direction.

So, in this case I can say that it is a descending stack this stack is a descending stack

because the stack pointer values are getting decremented. So, it was thousand to 999 to

998 etcetera and for the pop operation the stack pointer value will be incremented. So,

this type of implementation is a descending stack implementation.

On the other hand here the stack pointer values are increasing. So, this will be called an

ascending stack. So, the stack pointer values are incrementing with successive stack

operation successive push operation and with the pop operation this stack pointer value

will decrease. So, we have got descending stack we have got ascending stack, both are

correct. So, there is no doubt like which one is correct which one is not. So, there is

nothing like that. So, both are correct. So, any implementation can follow either of the

conventions.

Another convention that we can have is say suppose I say that my stack starts at this

point it is the location 1000, it is a location 1000. Now, at some point of time the stack

has grown up to this much. So, it has gone to the location, 1020. Now, what does it

mean? My stack pointer is here my stack pointer is here. So, if the stack pointer is there.

So, there I can have two possibilities like. So, it may have two meaning, one meaning is

that that the stack is actually full up to this point up to this much it is full and the next

push operation will be filling up this location.

So, this is one possible implementation. So, I can say that wherever the stack pointer

points to ease and empty location. So, that location is empty and the next push operation

will put the data there. And other convention may be the stack pointer instead of pointing

to this location it points to the previous location. So, in that case for doing a push

operation I should first implement the stack pointer and then put the data on to the stack.

So, this way I can have another classification one is called full stack full stack and

another is called another version is called empty stack.

So, they do not mean that the stack is full or stack is empty like that. So, full stack means

that the stack pointer points up to points to the last field entry last field entry in the stack.

Whereas, this empty stack will mean that it is the stack pointer points to points to the

next empty slot, it points to the next empty slot where the data can be put ok. So, overall,

I have got two more variants one is full stack another is empty stack. So, if I take these

two and these two into consideration. So, I can get four different types of stacks

implemented, full descending stack, full ascending stack, empty descending stack and

empty ascending stack. So, 4 variants can be there. So, ARM processor they do not

restrict you to have any of this variants. So, you can have all the 4 variants of stack, but

you can, so you can you have to use your own instructions for doing it. So, you have to

use you have to implement it separately. So, that is the only requirement, but this arm

processor will not stop you to that.

On the other hand if you remember 8085 or 8051 there is a specific saying like the stack

pointer it points to the empty the slot and the push operation should first increment the

stack pointer and then that value should be copied. That means, it is the actually having

some sort of a full stack implementation and the stack pointer was always getting

decremented. So, it is a full descending stack that we had there. But arm processor will

allow you to have any of the variants of the stack.

So, coming back to our discussion; So, we have got a 4 different variants, descending or

ascending and full stack pointer points to the last occupied address or empty stack

pointer points to the next available address. So, we have got different variants of this

instruction like store multiple full descending and LDMFM, load multiple full

descending.

So, they are used for implementing a full descending stack similarly STMFA and

LDMFA full ascending stack implementation. So, store multiple full ascending LDMFA

load multiple full ascending, then STMED and LDMED empty descending stack and

these STMEA and LDMEA for empty ascending stack. So, we can have a any variant.

So, you should not mix up this instruction.

Like, if you are use STMFD while for storing the values on to stack. So, while loading

you should not use LDMFA, ok. So, then the values that you get will be corrupted. But

otherwise there is no problem. So, if you are using the pair properly then there is no

problem. So, you will be getting the same values popped out from the stack.

