
Microprocessors and Microcontrollers
Prof. Santanu Chattopadhyay

Department of Electrical & Electronics and Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture – 35
8051 Microcontroller (Contd.)

So, in this example that we have considering.

(Refer Slide Time: 00:20)

So, this 8051 port 3.3 this pulse generator is connected and on 1.3 line, we have got the

LED. Now so, this so at this o r g 0000h, so you know that this is the instruction this is

an assembler directory that tells the assembler that this assembly process should put the

code from this address onwards.

So, at the location 000 h; so, if you look into this memory map; so, what we do? At this

at this position this is the address 0000 there we are putting the instruction LJMP main.

So, this is the instruction LJMP main that is put here. So, your main is located; so, your

main program will start from 30 h onwards. So, this is the 30 h this point onwards the

program will be loaded. So, there I have got this 8 bit contour; so, the so, this is there.

So, this is the set B instruction is there.

So, when the processor will start it will find this LJMP and it will come to this 30 h is

point and from that point it will start executing. So, apart from that we have said that this

connected to the external interrupt INT1 ok.

(Refer Slide Time: 01:52)

Now in INT1; so, you need to find out what is the interrupt address of this INT1. So,

INT1 is 0013; so, this is the vector address. So, I have to put the corresponding ISR in

the you have to put the corresponding ISR in the vector address 1 3; so, this is done. So,

this is my interrupt service routine in the in the in the interrupt service routine what I will

do? I will be I will be glowing this LED on I will be glowing this LED on and

accordingly I will be turning it on I will wait for some delay then I will be turning the

LED.

So, whenever this interrupt will occur from this source; whenever this interrupt will

occur from this source I will glow this i will put a 1 here. So, the LED is turned on wait

for 255 cycles by this is small delay look software delay look is there which will be

putting a delay; then I will turn off the delay and then it will return. So, how this whole

thing is done? Is that you see we are. So, in the main program what we are doing we are

making this set b tcon point tcon dot 2. So, tcon dot 2 it will make this INT1 edge

triggered. So, tcon register; so, we had got that interrupt types that. So, that type is set to

2; type is set to s triggering by setting that b to 1.

And this interrupt enable register; so, we are enabling the interrupt slight e a b set to 1.

So, this part is setting that e a bit. So, this is setting of that e a bit and this is the enabling

of the external interrupt. So, rest of the interrupts are disabled; so, in the main program

we just select the type of this interrupt 1 and we select and we enable the interrupt 1. And

then where the main program it waits in an infinite loop sjmp because main program has

got nothing more to do.

Whereas, now the timer has been enabled; so, from the outside world this pulses will be

generated and whenever this edge triggering will occur low to high transition will occur.

So, this will be the processor will get an interrupt; on getting this interrupt this ISR will

be this since it is an INT1. So, processor will automatically jumped to the address 0013.

So, so 0013 is somewhere here; so, this is the address 0013. So, there actually I will have

all this instruction the set B P P 3 P 1.3. So, this instruction will be there; so, this will be

starting from this point. So, there it will be executing this as a result this LED will be

turned on, it will wait for some delay here and then the LED will be turned off and then it

will be returning from interrupt.

Again; so, it will be returning to this point only it is the main program will program will

continue waiting here. Then after sometimes again the next falling edge will come and

again the system will get another interrupt and when it gets another interrupt again the

same the interrupt service routine will be invoked. So, it will come to this point it will

continue from that point onwards. So, this say this the interrupt service routines the

internal external interrupt service routines can be interrupt sources can be integrated with

the system and we can have the service routines for them for getting various jobs done

ok.

(Refer Slide Time: 05:27)

So, next we look into the serial communication. So, in case of 8085 we have seen the

serial communication. So, in case of 8051 also serial communication is possible and we

will see that how this is done like there is a there are some dedicated pins for that

purpose as well; so, how to do the serial communication in 8051.

(Refer Slide Time: 05:51)

So just to recapitulate; so, we have got The basic serial communication modes like

simplex, half duplex and full duplex in simplex mode the transmission is in one direction

from transmitter to receiver in case of half duplex. So, this transmission can be in both

the direction, but at one point of time transmission is in one direction only; so, when it is

connected to. So, once; so, that there is shown by this switches.

Once this connection is established; so, it will the transmitter to receiver. After sometime

the direction will be reversed and now it will be transmitter to receiver. So, it can be both

way, but at one point of time only one direction the information will flow. On other hand

in case of full duplex we have separate transmission and receiving time lines. So,

transmission can take place in both the directions simultaneously; so, that is the full

duplex type of communication.

(Refer Slide Time: 06:48)

So, when there is any serial communications they follow these type of protocol when no

communication is taking place. So, there is we have the signal line is high and that we

have got when the transmission starts the first we send a low bit. So, that is called the

that is the low bit is there that is LSB and then after that the bits are transmitted.

So, in this diagram the start bit is the low bit and that is the start of the transmission and

then we are sending the 8 bit of data d 0 to d 7 and then one or more stop bits may be set.

And we have some bits per second the bps setting because this is mostly asynchronous

transmission. So, we need to set the bit rate ok; so, at what rate the transmission will take

place that bit rate has to be set.

(Refer Slide Time: 07:44)

In case of 8051; we have got two dedicated pins receive data and transmit data R x D and

T x D. So, these are the two pins in 8051 that we have.

So, they are again multiplex ok. So, unlike a 8085 where we have got this S I D and S O

D in which dedicated for this serial communication; here it is not. So, here this pin 3.0 is

dedicated is multiplexed with R x D and pin 3.1 is multiplexed with T x D and for

transmission. And there is a special register called SBUF register; so, SBUF is the serial

buffer you can say. And for transmitting any data you have to put the content into the

SBUF register; as soon as you can you put content to the SBUF register the serial

communication starts.

So, you can have an instruction MOV SBUF comma hash D hash this character D. So,

this is SBUF will be loaded with a SBUF value of d which is 44 h or you can say like

MOV SBUF comma A. So, accumulators content accumulator content will be copied

onto SBUF and whatever be the value A; so, that will be transmitted.

You can get the copy of this SBUF into A so, that way. So, we can read the content of

SBUF buffer in to the buffer register into the A register you would see what it is

something is been received and something has been; so, you can do that.

(Refer Slide Time: 09:21)

Now, there is another problem like in case of 8051; so, this is the TTL chip. So, what

happens is that this receive and transmit lines that we have. So, that is pin 3.1 and 3.0

they will give you the TTL level output. So, TTL level output means; so, this signal

values are in the range of 0 to 5 volt.

So, it is a there is a some definite high and low level. So, the accordingly the signal value

cannot be the low cannot be lower than 0 and high cannot be more than 5. On the other

hand this serial communication protocol likes is RS232 C type of protocol. So, they have

got different voltage levels for logic high the voltage level is minus 12 volt to minus 15

volt minus 12 to minus 15 volt and for logic 0 it is a plus 12 to plus 15 volt.

So, you see that this 8051 chip it will not be able to provide this type of voltage levels.

So, normally what is done is that we have got a for serial communication interface we

have got another chip which is known as MAX232. So, this one this is this left side is

TTL compatible on the right side is RS232 C compatible. So this 8051 is connected to

this MAX232 pin. So, pin number 11 of this of this 8051 is connected to a pin number 11

of MAX232 then pin number 10 of 8051 connected to pin number 12 of MAX232.

Similarly, on the output type you can have some connector to which this is RS232 site.

So, whatever device you are going to connect; so, we can design a suitable connector and

do the connections there then the signal levels will be compatible. Anyway so, once we

have done this thing; so, we can go for the serial communication.

(Refer Slide Time: 11:23)

So, this for the serial communication whenever you write some data onto this SBUF

register it will be transmitted via this TXD pin. Similarly whenever it receives some data;

so, it is there in the shift register and from the shift register it comes to the SBUF

register; so the shift register is a not directly accessible. So, this SBUF is accessible by in

the program mode. So, you can read the content and get it into the accumulated. So, you

have to set the baud rate for this transmission and the baud rate for receiving. So, thus

baud rates are to be set for ensuring proper communication through the serial port.

(Refer Slide Time: 11:08)

Now, for the setting of baud rate there are some values ok. So,me timer in this timer 1

has to be used for this baud rate setting. And this if you want to set a baud rate of 9600

then this TH1 should be set to minus 3. If you are trying to set this baud rate to 4800 then

this TH1 should be set to minus 1; then minus 12 and minus 24.

So, these assuming that the crystal frequency is 11.0592 megahertz. So, these are the

various values of TH1 register that should be set for this for getting this baud rate.

(Refer Slide Time: 12:49)

Now, for serial communication; so, there is a register for serial control register or SCON

register in this SM0, SM1, SM2; so, they are the mode specifier. So, this and this REN is

the receive enable TB 8 is for transmit bit 8 and RB8 is the receive bit 8; TI is the

transmit interrupt flag. So, it will be set by hardware and TI by software.

So, when this TI interrupt occurs; so, then; that means, some transmission has taken

place and when this RI interrupt occurs then this RI interrupts receive interrupt has taken

place. But physically TI and RI also they are sending a single interrupt to the processor

and the process in the program you need to check whether the TI bit is set or RI bit is set.

Accordingly you can understand whether when some data has been transmitted or some

data has been received; so, we will see that.

(Refer Slide Time: 13:50)

So, this SM0 SM; so, this is a if it is 0 0. So, it is the shift register mode and then the

transmitter rate is fixed. So, it is crystal divided by 12 that is that 11.0592 mega hertz that

divided by 12 that is the rate at which the transmission will take place. If you are using

the mode 0 1; so, it is a 9 bit UART and then this that I will be now the transmission rate

can be variable the different baud rates that you are talking about here.

So, different baud rate can be selected if you are operating in the time in the mode 1 by

setting this SM0 SM1 to 1. So, if you are operating then you can set this mode to timer 1.

You can use the timer 1 for setting the baud rate if; you set it up as 1, 0 then it is mode 2

in mode 2 we have that 9 bit timer. So, this 9 bit UART; so, there I can have say one

extra bit there and then we say.

So, that about the transmission baud rate is fixed; so, this is crystal by 32 or crystal by

64. So, that way this transmission rate is fixed and mode 1 1; so, it is 9 bit UART with a

variable type variable baud rate. So, you can have this timer to set the to set the

transmission rate.

(Refer Slide Time: 15:13)

So, mode 0 is the simplest one; so, let us try to understand. So, the serial data enters and

exits through receives data; so, serials. So, the transmit data will output the shift clock

and so, this is the thing. So, you have got this transmit data and receive data; so, this; so,

this is data is used for both transmission and receive.

So, 8 bit is a transmitted this LSB will be received transmitted first baud rate is fixed as 1

by 12 of the oscillator frequency. So, this is typically used port expansion; so, you have

got to so, many extra bits and control to. So, you can you can use this individual bits for

different port as different port bits ok.

(Refer Slide Time: 16:00)

Then mode 1; so, here 10 bits are transmitted through T x D or this or received through a

R x D. So, 10 bits out of this 10 bits one is the start bit 8 bits of data and 1 stop bit. So,

this is the 10 bit that will be transmitted and on this is the stop bit goes into RB8 RB8

register when the baud rate is determined by the timer 1 overflow rate; so, if you if the

timer 1 clock is 1 by 32 of the machine cycle.

So, machine cycle is 1 by 12 of the piston; so, you can find like what is the what is the

what is the value like because the machine cycle pistol is 11.0592 that divided by 12 and

that is again divided by 32 for feeding the UART clock. So, that way you can set this

timer 1 value; so, this will go to the timer 2. So, this timer 2 is now getting a clock of 3

into 28800 hertz.

So, accordingly you can set the timer value that for getting that delay. So, timer clock can

be programmed as one 16th of the machine cycles. So, that way previously it was one

twelfth of the machine cycle; now it becomes one 16th of the machine cycle. So, if you

follow this formula then you can get the delays and whenever any instruction uses SBUF

as its destination register transmission will start.

So, UART clock is controlled by this timer 1 and for setting the timer 1 you can

understand that this crystal is a crystal clock is machine cycle is divided by 16 and that

way. So, machine cycle is one twelfth of the piston clock and this piston clock is divided

by sorry the machine cycle is divided by 16 so, that will give you the delay for the timer.

(Refer Slide Time: 17:52)

So, in mode 0 the one chip oscillator is divided by 12; so, that is the baud rate and clock.

So, this is if it is in mode 2; so, you have got two SMOD is equal 0 SMOD equal to 1.

So, if SMOD equal to 0 it is divided by 64 that is fixed if it is in SMOD equal to 1; so, it

is divided by 32. So, these baud rate is also fixed in MODs 1 3; so, this. So, this

transmission rate is controlled by this timer 1 overflow; so, that is why this MODs are

useful.

So, if it is if it is connected if it is SMOD equal to 0 then the timer overflow will be

divided by 32 if it is SMOD is equal to 1, then the timer 1 will be you divided by divided

16 that overflow will be. So, that is determined in the baud rate this way we can have

different baud rate settings and different transmissions of serial transmissions of 8051.

(Refer Slide Time: 18:54)

In mode 2 11 bits are transmitted through transmitter. So, TXD or received through R x

D and out of that 11 bit ones is the start bit 8 bit of data one programmable ninth data bit.

So, programmable ninth data bits; so, you can use it of parity or something like that and

one stop bit. So, one transmit this 9 bit the TB 8 can be assigned 0 or 1 on this is the 9 bit

will be RB8 register RB8 of the SMOD. So, it can be the parity bit so,; so, we can

compute.

So, this bit is available in the; so, rest of the 8 bits will go to the SBUF register, but you

can get the ninth bit in the TB8 or RB8 of this SCON register. So, you can check for the

parity by that and again the baud rate is programmable by this SMOD and there is a

PCON register is also there will come to that which will control this thing.

Mode 3 same as mode 2, but may have variable baud rate generated by timer 1. So, that

way it is the mode 3 operation.

(Refer Slide Time: 20:07)

So, this SMOD is the bit 7 of the PCON register. So, PCON is the power control register.

So, this is the out of the bit 7 is if SMOD equal to 1 then double baud rate is used. So,

whatever if you if you looking to this diagram like here; so, we said that SMOD equal to

0; it is 64 and SMOD equal to 1, it is 32 similarly here SMOD equal to 0 is 32 and

SMOD equal to 1 is the clock is divided by 16.

So, clock is clock frequency will be higher if you make a SMOD equal to 1. So, that is

controlled by the PCON registers bit numbers 7. So, PCON is not bit addressable, but;

so, to set it. So, you have to you can do it like this first we get this PCON register value

onto a register, then we set bit this accumulator seventh bit and then we move this

accumulator in to PCON register. So, that can be done; so, this bit will get modified this

bit is now getting set for that purpose.

(Refer Slide Time: 21:15)

This PCON register is a power is the power control register; so it has got this SMOD bit.

So, apart from that it has got this; so, this 3 bits are reserved. So, then we have got this

GF 0, GF 1 and PD and IDL; so, GF 1 is general purpose flag bit GF 0 is general purpose

flag bit. So, they can be used by the programmer then this P D PCON dot 1 is the power

down bit. So, if you set this P D to 1; so, this will activate the power down operation and

if it I if PCON 0 is the IDL bit. So, if you set this IDL bit to 1.

So, this the idle thus; so, it will may activate the idle mode of the operation. So, from idle

mode operations; so, it will be it will be taking some interrupts should be reached the

processor to the two to activate it on the other this power down mode. So, if it is power

down may be it can it can advice many devices to go to power down mode and all that.

So,me control signals are activated by which it will tell external world that it is moving

to power down mode.

(Refer Slide Time: 22:23)

So, power control standard for applications where power consumption is critical, so this

is there are. So, there are many standard for this power control like ACPI, we have got a

control standard for this power control. So, similarly we have got for any processor that

you have now. So, if you look into you will find now some power control mechanism has

been provided.

So, this 8051 also has got this power control feature. So, this has got one idle mode and a

power down mode.

(Refer Slide Time: 23:00)

In idle mode; so, an instructions that sets this PCON dot 0 it will go into idle mode and

last instruction executed before going in to idle mode. So, the internal CPU also this is

the; so, that will be last instruction. So, that will be after that nothing more will happen

the CPU clock is gated off.

So, CPU will not get the clock as a result the internal operation will stop interrupt timer

and serial port functions act normally. So, these operations will continue, but only the

CPU will be not doing any further instruction processing. So, it will be idle, but the

interrupt timer and serial port they will operate; all of registers ports and internal RAM

maintain their data during this idle period.

So, the internal values will be stored, but will be held, but the processor will not do any

other operation. ALE and PSEN will hold at logic high level since it is the processor is

not fetching any further instruction. So, this ALE is also high and PSEN bar line is also

high to mean that no activity is taking place.

Now, to come out of the idle mode; so, it has to use some interrupt and interrupt will

cause this PCONs dot 0 to be cleared by hardware. So, it will terminate the idle mode

and then it will go to the interrupt service routine. So, that is very good like if some event

has occurred in the outside world. So, it will be it will be turning on the processors

operation. So, it will go to the ISR and from that points onwards whatever the processes

was doing previously; so, it will continue with that.

So, the instructions just after the idle instruction; so, they are on returned from the

interrupt. So, it will be occurring that way; so, there as it is as it is said here suppose this

is a piece of code and this instruction is sitting this PCON dot 0. So, it is setting that

PCON dot 0; now after that, so it is can come back to this point, but at this point the

processor has become idle. So, if the processor has become idle after sometime from

interrupt has occurred and when the interrupt has occurred then this is the interrupt

service routine so, processor will execute this interrupt service routine.

And at the end there is a return the data instructional and the data instruction will take it

to the instruction just after setting of this PCON thing. So, this way it can come back to

this point like it is coming to this after the interrupt is over. So, it can come to this point

and the idle mode is over. So, this way interrupt can take the processor out of this idle

mode and do the operation.

(Refer Slide Time: 25:55)

On the other hand this power down mode; so, an instruction that sets an PCON dot 1 it

causes the power down mode. And the same thing that is a last instruction is executed

before going into power down mode the on chip oscillated will be stopped and all

functions are stopped contents of 1 GB RAM and SSFRs will be maintained ok.

So, ALE PSEN bar will be held low only reset can terminate the power down mode. So,

in unlike this, but unlike this the idle mode where the interrupt can turn off this power

down mode; this idle mode in case of power down mode only the reset operation can be

they can reset and reset the this entire power down mode. And it can take it take the

processor out of this operation out of this power down mode. So, these are very useful

when you are when you are talking about this power handling part.

So, these are very much useful for designing systems where we have to when we are

going to save the battery like most of the cases microcontroller they are used for

embedded application where the battery life is important. So, we can use this processor

for doing this things; we can say that we can put the power down we cannot required the

operations we can put it in power down mode and later on or in the idle mode and

whenever the this service is required we can turn on the device or turn on the services;

so, this is a power control example.

(Refer Slide Time: 27:23)

So, this is Ljmp main; so, this is main the routine. So, you see that is this is the PCON so,

PCON register we are ending with 02. So, this will put it in the power down mode and

so, this is the idle mode. So, it is you can use it can come back to this when the interrupt

occurs. So, it can come back to this point and on reset. So, it will be this power down

will be cancelled and this is the idle mode. So, when the idle mode some interrupt will

occur for example, here when the interrupt occurs. So, it will be doing that.

