
Microprocessors and Microcontrollers
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture - 32
8051 Microcontroller (Contd.)

Next we look into an example, suppose we want to find the value for setting of this

TMOD register, if you want to program this timer 0 in mode 2 and use the 8051 crystal

frequency as the clock source, and use the instructions to start and stop the timer.

(Refer Slide Time: 00:19)

So, basically it is a soft software-controlled timer that we want to operate, and we want

to use this timer 0 in mode 2. So, definitely this TMOD setting. So, time for timer 1 this

4 most significant bits are for timer 1. So, they are all 0, now for this least significant 4

bit so, they are for timer 0, and out of that this gate bit is 0. So, this gate equal to 0, that

is a internal time internal operation, then this is your this count..

So, that is for then this second bit is C by T. So, C by T is 0, means we are looking for

the timer operation. So, C by T is 0 and then 1 0. So, this is the mode identifier. So, this

is the pattern that we have to load in the TMOD register, if we want to do this operation.

(Refer Slide Time: 01:26)

So, this is the summary of this timer modes. So, in mode 0 what happens is that. So, this

timer clock. So, this this comes from the internal source, and then this TLX has got 5

bits, and THX has got 8 bits, and when it overflows then this TFx bit will be set. So,

there is a for timer 0. So, there is a TF 0 bit, which is basically the overflow bit. So, when

this timer overflows this bit is set.

In mode 1. So, that was a 16-bit mode. So, again the same thing TLX and THX. So, this

is in mode 0 it was 13 bit here it is a 16-bit timer, and again the rest of the thing is same.

So, it is it will when it overflows. So, it will affect the TF0 bit, then in mode 2 so, we

have got this reload mechanism. So, this when this TLX is. So, it is an 8-bit timer. So,

when the timer overflows the TFx is set, and after that the value is reloaded from THX

into TLX and the process restarts. So, this will be doing a periodically, in mode 3 we

have got this 2 such timers TL 0 and TH 0. So, there are 2 overflow flags TF 0 and TF 1..

Now, you see that this timer clock. So, when TL 0 will overflow. So, this TF 0 will be

set, and this when this TH 0 workflows then this is TF 1 will be set. So, we will come to

more detail with mode 3 later. So, we will see that later.

(Refer Slide Time: 03:11)

Next interesting register, the that we have for this timer counter operation is the TCON

register. So, TCON register. So, this is the timer control registered is TMOD. So, upper

nibble where there is for timer counter, lower nibble is for interrupt. So, this is. So, this is

the timer control register; so, TCON..

So, TMOD we have already seen. So, this is about the TCON register. So, this register

you can divide it into 2 nibbles. So, this is the lower nibble. So, lower nibble we will not

discuss now. So, they are for interrupts, for upper nibble is for the timer operation, and

here you see those bits TR 0 ad TR 1. So, TR 0 is for running the timer counter 0 and TR

1 is for running the timer counter 1.

So, TR 0 if you set this bit to 0, then the timer will be stopped, and if you set the TR b to

1, then the timer will be started. So, previously we have seen that the; so, for soft

controlled or software-controlled timers. So, you should program this TR 0 and TR 1

bits. So, those bits can be use those bits can be set by using this this by using sum

instruction that will affect this TR 0 and TR 1 bits, and this this TF 0 and TF 1 also you

have seen that is basically the overflow, in when the overflow occurs then this TF 0 and

TF 1 will be set..

(Refer Slide Time: 04:43)

So, that TF or the timer flag. So, here TF 0 is for timer counter 0, TF 1 is for timer

counter 1. So, it is like carry. So, initially TF is equal to 0, and then when this TH TL will

rollover from all f to 0. So, if is a 16-bit timer, then when it is rolls over from 65 FFFFH

to all 0 then the TF flag is set. So, TF equal to 0; so, we have not yet reached the final

valuem and TF equal to 1 means we have reached the timer value..

So, what we can do while right generating as a delay. So, we can initialize the those

timer with some value with some initial value, then start the timer by setting the

corresponding TR bit and now continually monitor whether these TF bit is set or not,

because once the TF bit is set means that time has passed. So, you have that time value

has been used.

So, there are interrupts. So, we can. So, there are. So, we can do it in 2 ways. So, one is

via this polling mechanism, another is via this interrupt mechanism. So, what I say is like

this. So, if I have got this timer, now this timer when it workflows. So, it will set that TF

flag. So, what you can do, you can either poll for poll this TF flag. So, whether it is 0

whether it is 1 or not, and you can continually do that. So, you can initialize the timer

and then start it and continually poll the TF bit whether it has become 1 or not.

Other possibility is you can enable the timer interrupt. So, we see how to enable the

timer interrupt while discussing about the interrupts, but once if this is enabled, then

whenever this TF is overflow. So, this will generate and interrupt to the processor. So,

the processor maybe doing something else, and it now it will be up now it will be

interrupted. So, it will go to the timer service routine. So, this is typically useful when

you are suppose designing a digital watch. So, in the digital watch. So, I have got this is

hour part then minute part and second part fine.

So, the basic or the main program it may be continually getting those hour minute and

second values from some memory location and displaying it, and side by side it needs to

update the time for updating the time. So, every second the processor should update the

time value, and how will it do it. So, it will start a timer for a value of 1 second, and

whenever this timer overflows the interrupt is enabled..

So, you can have an ISR interrupt service routine for that purpose and then what that

interrupt service routine will do, it will be updating the corresponding memory location

for this hour minute second those bytes and naturally. So, this my display routine since it

is reading from that location. So, it will be displaying the correct time value. So, this way

we can use this timers for designing some real time clock..

So, this TF flags are that TF bits are useful that way. So, next we will look into the

instructions, that are that can be that are required for this timer operation.

(Refer Slide Time: 08:09)

So, SETB TR 0. So, this is bit addressable this TCON register is bit addressable. So, you

can say like SETB TR 0, or SETB TCON dot 4, or you can say clear TR 0. So, SETB TR

0 if you do then timer 0 will start, and if you are doing this set clear TR 0 then the timer

0 will stop. Similarly, we can have this SETB TF 0..

So, it will set this timer overflow flag to 0 and clear TF 0. So, also this SETB TF 0 is

generally not required, but this clear TF 0 is required, because whenever you are

sampling this line. So, if there is an overflow then this bit will be then this bit will be set

by the system. So, in your ISR. So, you may like to reset that bit first otherwise it will be

taken as another interrupt..

So, that way this clear bit is necessary, similarly for timer 1 we have got this SETB TR 1

and clear TR 1, and we have got this SETB TF 1, and clear TF 1 so, those things, and

this 4 bits IE1 and IT 1 IT 0. So, this will come when you go into the interrupts..

(Refer Slide Time: 09:33)

So, next we will look into the timer mode 1. So, timer mode 1 is. So, it is 16-bit timer as

we know. So, in our examples. So, we will consider only timer 0 and knowingfully well

that the same thing will also be true for timer 1. So, this 16-bit timer. So, it has got TH 0

and TL 0 register pair. So, TH 0 TL 0 pair will be incremented continually, once this TR

0 is set to 1

So, TR 0 being set to 1. So, they will be this value will be incremented continually, and it

will stop when this TH 0 TL 0 pair will reach 0 or say this TR 0 has been is clear, like in

a program after some time. So, you can stop this timer by see clearing the TR 0, though it

has not overflown..

So, you can stop it in between by clearing the TR 0 bit, or otherwise this timer will

continually update. So, it will be looking into the internal system clock. So, it will be

updating itself, and then when it will be at the end of each machine cycle. So, it will be

counting it up by 1, because that is the driving of the internal clock.

So, when it reaches the value FFFFH then it will roll over to 0 0 0 0, and then the TF 0

bit will be raised. So, that is the mode 1 operation of this timer, and programmer can

check TF 0 and stop the timer 0. So now, it now the programmer are as I said that it may

be a polling. So, programmer in a pole in a polling mode can continually check for this

TF 0 a TF 0 bits. So, I can have an instruction like this that jump sorry, I can have an

instruction like after setting the timer starting the timer. So, somewhere I have got this

SETB TR 0. So, timer has started and after some time. So, I can if I just want to have a

delay. So, you can say that jump on not bit TF 0 L 1 where L 1 is this this place itself.

So, this is the polling code. So, I am checking the bit TF 0 and if it is not yet set. So, I am

just looking at this point. So, this way. So, whenever this bit will be is set. So, it will be

coming to the this check will be false. So, it will be coming to the next position, this way

we can have this type of polling implemented in our code. Next so, how to use this mode

1.

(Refer Slide Time: 12:32)

So, first we have to choose mod 1 for timer 0, and for that matter. So, we set the

controlled over for in the TMOD register to be 0 to be 0 1 H. So, 0 1 H means the first 4

bits will be 0, first 4 bits will be 0, and the next 4 bits will be 0 0 0 1.

So, this part is for timer 1. So, that is not our concern now and this part is for timer 0 out

of that this is the gate so; that means, I am driving for from internal source the clock is

internal source. So, this 0 will mean that it is a timer operation and then these 2 bits. So,

they will identify that I am operating in mode 1 that is 16-bit timer mode the next

important thing is to load this TH 0 TL 0 pair..

So, this pair I am loading as FF FC. So, the count value that I have loaded is FFFC, and

it is better that we clear this TF 0 bit. So, for the safety because previously maybe this TF

0 was set, and it was not cleared before this timer had started. So, it is to be on the safe

side we should clear the TF 0 bit. So, we clear the TF 0 bit here and then we start set bit

TR 0. So, SETB TR 0. So, it will start the timer now. So, from FFFC. So, it will go to

FFFD then FFFE. So, it will go like that. So, when it comes to 0, then there is an

overflow. So, that will be detected..

So, this is the thing. So, 8051 will start counting like this.

(Refer Slide Time: 14:23)

So, it will be FFFC, FFFD, FFFE and FFFF then this 0 0. So, when it goes to this 1. So,

this FFFF to 0 0 0 0 at that point. So, if you monitor this TF 1 this TF 1 bit will be set to

1. So, previously this TF g bit was 0, this TF this this all TF 0 bit. So, this is not 0 is not

explicitly mentioned here. So, this is the TF 0 bit. So, that is set to 0, and when this

overflow occurs then it will be coming. So, we can monitor this situation whether this TF

0 is becoming 1 or not, and when this TF 0 becomes 1. So, we should stop the timer. So,

you can stop this TR 0, you can reset this TR 0 bit accordingly.

(Refer Slide Time: 15:19)

So, when this TH 0 TL 0 rolls over from FFFF to 0 0 0 0, the 8051 will set TF 0 bit to 1.

So now, this we can we can do it as I was telling that we can have a monitoring like this,

that jump on not bit this TF TF 0 again. So, we can have something like that. So, that

will mean that we are monitoring thus TR 0 bit, and as long as it is 0 so, it will be

looking here then we clear the TR 0 bit to stop stop the timer operation, and then we

clear the TF flag to so, that next time when you want to operate the timer, it should not

create any problem. So, this way we can use this timer 16-bit timer in mode 1.

(Refer Slide Time: 16:13)

 So, the operation is like this the crystal frequency. So, that is divided by this 12. So, this

is in c by T equal to 0. So, this 12 cycles in case of 8051; 12 clock cycles constitute 1

machine cycle, and this timer value is updated per machine cycle so, that is why so, it is

the internally it is divided by 12. So, this division is internal..

So, it is internally divided by 12 so, this type of a clock is generated, and then this it is

fate to an n gates, this is all logical. So, whether it how is it physically implemented. So,

that is not known, but logically you can think about it as if this TR bit is ended with the

clock, and when this TR bit is 1 then only this this clock will be allowed to reach this

timer value, and this timer value will start uptime upcounting.

So, from FF from whatever be the value. So, it will go on increasing, and then with it

rolls over from FFFF to 0, then this timer overflow flag f TF will be set. So, how to

calculate the delay.

(Refer Slide Time: 17:26)

So, it depends on the crystal frequency of course, but how can I do this? For example,

suppose the value that I have initialized with this this TH and TL register pair is YYXX

hex. So, if it is YYXX hex you know that if. So, how many cycles will it take to go to

FFFF. So, it is FFFF minus YYXX plus 1. So, after so many cycles overflow will occur,

and if this is 11.0592 is the crystal frequency. So, that turns out to be 1.085 microsecond.

So, that way I can say that it is so, this is this has to be so, this is divided by 12 first of

all, if we look into this previous slide. So, this this crystal oscillator is divided by 12 and

that is fed as clock here. So, here also. So, this divided by 12 and then if you convert it

into time. So, 1 by f. So, that turns out to be 1.085 microsecond or in decimal you can

just. So, same thing instead of taking FFFF FF plus 1. So, you can say simply write like

65536, minus this YYXX in decimal maybe say NNNNN. So, this is multiplied by 1.085

microseconds. So, this way given this time value the timer initial value. So, we can

calculate what is the actual delay that is produced.

(Refer Slide Time: 18:57)

Suppose we want to design a square wave with 50 percent duty cycle on 4 bit 1.5. So, we

have seen previously this example, but there we were using that soft delays, now we are

now here we will be using this timer delays. So, we are using this timer 0 mode 1 16 bit

then move TL 0 f 2 h. So, and this TH 0 0 FFH. So, this timer value that is loaded is

FFFFF 2..

So, this is value that is loaded, now we compliment p 1.5. So, that way we whatever be

the previous value of this port. So, that gets complimented then we give a call delay. So,

the delay routine is called. So, we will see that delay routine and then SJMP here, if it

will come back to this point. So, again this timer will be loaded and the value will be

complimented.

 (Refer Slide Time: 19:54)

So, the delay routine is like this so, we set bit this TR 0 this timer is started. So,

previously the delay routine was doing some registered decrementing jump not 0

etcetera. So, here instead of that we are starting the timer, and we are now monitoring the

TF 0 bit. So, this JNB TF 0 again. So, this will be continually looping here, till this TF 0

bit is set to 1. So, when this t 0 is set to 1, at that time this this delay has been seen. So, it

is clear TR 0 and clear TF 0. So, we stop the timer 0, and it will clear the timer 0 flag and

it will return. So, this program it will be doing that thing like say it will be doing this

operation.

So, after that again. So, after this after we have returned from this delay routine. So, it is

basically this jumping to this point here, and here again we are initializing the timer to

TL 0 and TH 0 those 2 registers were initializing 2 values. So, this value is same for both

time high and time low..

So, you get this value as the as a 50 percent duty cycle. So, you can also very easily

calculate what is the delay that is produced, because the count value that you have is the

initial value is FFF 2. So, using the previous formula that we have got here. So, you can

calculate what is the ontime and offtime. So, accordingly you can say that. So, so much

of what will be the frequency of this square wave that is generated. So, that can be

calculated very easily.

(Refer Slide Time: 21:41)

Next so, we try to find the frequency. So, this program. So, this is generating a square

wave on p 1.5 using timer 1, and we want to find the frequency, now so, first off, all this

TMOD setting. So, TMOD setting second nibble is 0..

So, this should be TH 1 it is not if you if you want to get this 3 4 7 6 here. So, this is not

3 4 7 6 sorry. So, this is not 3 4 7 6. So, this is 7 6 3 4, because this TH register has got 7

6 and this TL register has got there 3 4. So, it is 7 6 3 4. So, we are initializing this TH

TL pair, then set bit TR 1. So, we are starting the timer 1 at this point, and then jump on

not bit TF 1 back. So, this is basically that polling of that plane TF 1.

Then we are clearing TR 1. So, TR 1. So, this timer is this timer is stopped, then we are

complimenting the bit then we are clearing the TF 1 bit. So, TF 1 bit is cleared so, this

timer is now that previously whatever this TF 1 was set. So, that is cleared at this point,

and then SJMP again. So, it goes to here and again the timer is loaded. So, this is again

50 percent duty cycle case, but the value that we have loaded is 7 6 3 4 hex..

So, question is to find the frequency and it just has to simplify the problem, we do not

include the delays of these individual instructions. So, to get a more accurate thing like

you have to take into account this individual instruction delays also, but they are they

may not be very high compared to the delay that is produced by the timer. So, they can

be neglected for our discussion..

 (Refer Slide Time: 24:59)

So, what is that so, we have loaded this initial value of 7 6 3 4. So, our total clock count

is FFFF minus 7 6 3 4 plus 1. So, that is. So, that is 8 9 CC the 3 5 2 7 6 clock time clock

count. So, this half period. So, this is. So, since this delay is used for both on part and off

part. So, we can say that for each of the parts. So, delay is 38.274 millisecond, the whole

delay is the whole-time period of the signal is 2 into 38.274 millisecond that is 76.548

millisecond. So, frequency of the square wave that is generated is 1 upon 76.548

millisecond, it is 13.064 hour.

So, mode 1 is. So, this is not auto reload. So, so we need to reload the TH 1 and TL 1

registers separately, and then that then only we can this TH 1 and TL 1 registers, every

time you need to restart the counter restart the timer, you have to reload this TH 1 and TL

1 pair, the same is true for this timer 0; however, if you are looking for this auto reload

mode. So, you have to use the mode 2..

(Refer Slide Time: 26:32)

So, in in that case many time this reloading here as we have done in this case. So, every

time after producing something again we are loading these values. So, that will not be

required. So, we will see that in mode 2 discussion.

