
Microprocessors and Microcontrollers
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 27
8051 Microcontroller (Contd.)

(Refer Slide Time: 00:20)

Other addressing mode is the register addressing, so where the source or destination is

one of the CPU registers. Like typical example like MOV R0 comma A, where R0 gets

the content of A, they MOV A comma R7; A gets the content of R7 MOV A comma R4.

So, like that we can make one of the operands one of the source or destination as the

CPU register.

Like say this instruction MOV DPTR hash 2 to 5F5H. So, this DPT; so, DPTR pair will

get this value. So, DPH will get 2 5 and DPL will get F 5 or we can have this individual

registers accessed DPL DPH. So, R5 comma DPL; so, DPL’s content will come to R5.

So, there should be a number here say R5 R4 or R3 something like that the register

number is missing that comma DPH. So, that register will get the value of the DPH

register. So, as I told previously that I cannot have an instruction like MOV R4 comma

R7. So, this is not allowed ok; so, this is not allowed.

So, if you really want to MOV the content of current register 7 to register 4. So, you have

to give the corresponding memory address. So, you can write something like this that

MOV 4 comma 7. So, essentially what will happen is that the memory location 4 will get

the content of memory location 7. And assuming that your memory locations are current

register bank is register is the bank 0; then this will be transferring the content of register

7 to register 4. If you are using some other banks, appropriately we have to calculate

these two memory location addresses and then we have to put those values.

So, this way we can use this addressing; we can use this register addressing for

transferring control between the registers transferring values between the registers.

(Refer Slide Time: 02:15)

Then we can have direct mode. So, here in the direct mode; so, we specify data by a by 8

bit address. So, usually the addresses are in the range of 3; 30h to 7 Fh. So, we can write

like MOV a comma 7 0 h; so, content of memory location 70h they will be coming to the

A register. So, this is that 30 to 7F memory range that I was talking about. So, this is in

the direct mode we can use them then R0 comma 4 0 h copy content of memory location

40h to R0.

So, this way we can do this thing like. So, this one say MOV was 0D0h comma a. So,

0D0; so, this happens to be the PSW register; this is the special function address h 0; D0

is the special function address for this register PSW. So, there the content of accumulator

will the will go there; so, if we put the content of a into the PSW register.

(Refer Slide Time: 03:22)

Then we can play with R0 2. So, then we have got the direct mode; so, in the direct

mode. So, we can have this instructions they MOV A comma 4; so, instead of writing

register. So, when you are writing like MOV A comma R4. So, it is you can you can get

this it is equivalent to MOV A comma 4.

Then we can have this MOV 7 comma 2 which is equivalent to MOV R7 comma R6;

then MOV A comma 7. So, this is correct, but this one we cannot write; MOV A comma

R7. So, this is not allowed they MOV R2 comma has 5; so, put 5 in R2 and MOV R2

comma 5. So, it content puts the content of ram 5 in R2; so, this we have already

discussed. Only thing to note is that this MOV A comma R7; so, this is not allowed in.

So, R7 cannot be used in the direct addressing mode.

(Refer Slide Time: 04:18)

You can use this register indirect mode the address of the source or destination is

specified in register. So, you can say like say PSW you can say like mov psw has 0. So,

so, that sets that usage of register bank 0 and then we are telling that mov r0 comma 0 x

three C. So, r0 gets the value of this 3 C. And then at the rate r0; we are putting the value

3. So, what will happen is that since r0 is having this value 3 C.

So, this 3 C will be used as the memory address and then this memory address will be

going to this memory address 3 C will be getting the content that we mentioned here. So,

when we execute this instruction MOV at the rate r0 comma hash 3; so, it will be getting

the memory location 3 C will get the value 3.

So, only the registers R0 and R1 can be used for this purpose. So, you cannot use any

other register like you cannot have any instruction like mov at the rate r2 comma hash 3.

So, that is not possible only R0 and R1 and we have to be careful that R0 and R1 they

have been initialized with proper values.

So, in this case when we do this so, we are setting R0 first of all we set the bank then in

that bank in the R0 register; we are putting this value 3 C and then doing this movement

or you can fall.

So, that is for internal memory operation. So, internal memory when you are trying to

access in indirect mode; so, you can do it like this. So, if you are trying to use external

memory in indirect mode then we have to use this DPTR register ok. So this instruction

this pair of instructions; so, they will be putting the content they will putting get the

content of memory location 9000 into the A register and 9000 is an external memory;

external memory location.

So, we first of all MOV the value 9000 to that dptr register ok. So, DPH gets 9 0; DPL

gets 0 0. So, DPTR pair gets 9000 h and then we say the mov x a comma at the rate dptr.

So, it will be accessing the external memory and memory location 9000 from there the

content will come to accumulated at a. So, mov x is not allowed for internal memory

access; similarly mov is not allowed for external memory access.

So, this x; so, this will mark that a processor should is trying to access the external

memory.

(Refer Slide Time: 06:56)

Then we have got this register indirect mode; the source and destination addresses, the

sum of the base address and the accumulator some accumulator can be used as an index.

Like say this one; so, dptr hash 4000 h mov dptr comma has 4000 h dptr gets 4000; then

we mov a comma 5 and then we say mov c a comma at the rate a plus dptr here. So, dp a

is current content is 5. So, this DPTR value will be added to that; so, that way we get we

will get the value 4005. And then so there from this external program memory; so, we

are getting the value into the a register.

So, this is useful when you are having some sort of look up tables ok. So, what happens

is that this whenever we are having some lookup table. So, maybe we have got some

function f x and for different values of x; we have got a table. So, this is the x and this is

the f x. So, this is 0, 1, 2, 3; so, up to some value say up to 100; we have computed the

values and those values are stored in a; so, these are the different values. So, while

writing the program; so, instead of writing the code separately what we do is that we take

a portion of memory.

(Refer Slide Time: 08:21)

And then there we write down the values of this function f at various locations. The first

location has got the value of function f 0, then the next one is at f 1, next one is that f 2;

like that. This is typically useful when you are say for example, doing some filtering

operation where these signal samples are multiplied by filter coefficients. So, filter

coefficients are fixed ok; so, that are not going to change. So, they can be the filter

coefficients can be stored in this type of lookup table.

Now, since these values are not going to change. So, in some sense we can say that they

are part of code as the values are not going to change. So, what we do they can be; so in

your program that you are writing. So, this can be a part of the programs after that we

have got the main program, but this entire thing can be treated as the program. Now you

need to access the contents of these locations for doing some operation.

Now this particular example that we have here; so, what it is doing. So, somehow

suppose this is stored from the external memory location 4000 onwards. So, 4000 4001

like that; so, we are trying to access the fifth value. So, f 5 we are trying to access the

location with the value of say f 5, then with this 4000 we add 5 so, that it comes to in this

particular address, comes to this particular address and then mov c a comma at the rate a

plus dptr; so, what this instruction what it.

So, with the dptr the value of A register will be added and at the rate it is on this whole

thing ok; at the rate is on a plus dptr. So, that is the semantics; so, that value becomes

4005. So, memory location 4005 s content comes to the accumulator. So, that way you

get the content of this location. So, this is very much useful when you have got this type

of look up tables stored as arrays in the external memory and then you can use it for in

your code ok.

So, there for that purpose this has been thought about and since these microcontrollers

are used for embedded application. So, many times we have got this type of situation. So,

maybe we have to have some complex function. So though it is difficult to compute it

every time; so, what is done is that they are computed once only at the design time and

the values are kept as lookup table and that that becomes a part of the code. So, that can

be done.

(Refer Slide Time: 11:03)

So, next see another one. So, where it is; so, we can also have this PC; this base address

can be DPTR or the program counter. So, we have seen an example where the base

address is DPTR; so, this other one is. So, whenever other possibilities that we can we

can we can have this thing from this with respect to PC like mov a comma hash 5; then

1002 movs at 1000 to we have got mov c a comma at the rate a plus PC; so, a plus PC.

So, that will be having this memory location 1008. So, that so; this requires 1000 and this

is after this instruction has been faced ok. So, after this instruction has been faced the PC

value is 1003. So, with that 1003; this 5 will be added; so, it will become 1008. So, that

way we can have this 1008 remote location content available in the a register. So, this

mov c the instruction it can read internal code memory. So, that way so, it can it can get

the value from there.

(Refer Slide Time: 12:15)

Then the A register it can be accessed by direct and register mode. So, both direct and

register mode can be used; so, these three instruction has same function with different

type of code like. So, the address of this A register is E 5; so, we can have we can have

this mov a comma 0 0. So, that is coded as E 5 0 0; then mov a cc comma 0 0 h. So, that

is also that is coded in a different format 8500E0.

And similarly so, this is mov 0e0 comma 0 h. So, this is also actually that accumulator

also so e 0 is the address of the A register. So, e 0 being the address of a register; so, the

all these are same. So, you can. So, this is this instruction and this instruction they are

same and this is semantically same with this instruction though the size of the instruction

here is 2 byte and here there are three bytes, but semantically they are same.

Similarly these three instructions they; mov c mov a comma r1; then mov accumulator

comma r1 and mov 0e0h comma r 1; so, they are all same ok. So, e 0 as we said that e 0

is the address of accumulator register. So, there is that way it remains; it is same as that

one. So, all these instructions they have got the same meaning.

(Refer Slide Time: 13:40)

Some other special function registered like the B register. So, it is always it can be used

in direct mode accepting in the multiplication and division operation. These two

instruction it can be used separately; so, this mov b comma 0 0 h. So, this is the code

8500F0; then mov 0f0h 00. So, this is also the same is the same instruction same

meaning, but they can have different formats ok. So, all these will be same b is coded as

f 0.

So, that f 0 comes here; so, here also the same thing so, two instructions having the same

meaning then P0 to P3. So, they can be used as direct address like mov p 0 comma a. So,

this is ah; so, we can have this p 0 register is this 8 0; p 0 registers the address is 80 h.

So, this is F580; then we can have this instruction which will be also F580, but here h 0

is mentioned explicitly.

Then we can also have mov p 0 comma p 1; like say, so this is p 0 is 80 and p 1 is 9 0.

So, mov p 0 comma p 1; so, the this is this becomes a 3 byte instruction, we can have

something like this. So, these are this P0 to P3. So, we can use them as direct addresses.

Then other SFRs like PCON, TMOD, PSW that they can also be used as used for this

movements.

(Refer Slide Time: 15:08)

So, all special function registers like accumulator B, PCON etcetera; they are accessible

by name and direct axis, but both of them must be coded in as direct address. So, while

writing in the assembly language program; so, we are we are writing them as name or

direct address, but while the machine code is generated. So, they are coded as direct

addresses only; that is obvious.

(Refer Slide Time: 15:38)

Next we look into the immediate addressing like say mov say add a comma 3 d hash 3 d

h; that means, with A register; we want to add the we want to add the value 3 d h. So, this

instruction is a 2 byte instruction where the first byte is the Op code and Op code for add

a; is the 24. So, that is the 24 then they add a add a immediate add a immediate is 24 and

the immediate value will be for our preceding you will be following the Op code.

So, that is the 3 d. So, this 3 d is the immediate data then in the direct addressing. So, you

can have like MOV R 3 comma 0E8h so; that means, the content of memory location

0E8h will come to the register R3. So, this is the; this Op code is A B and the address is

E A and the address the if the value the address value is 8. So, that will come to this

second byte. So, we can have this way the direct addressing.

(Refer Slide Time: 16:44)

So, this is the instruction format like register addressing. So, this Op code will be there

and there will be three bits which will identify the register. So, this mov a; so, all these

instructions. So, these all these mov a type of instructions they have got the code like say

E and then this. So, these 5 first 5 bits are fixed ok; so, this is for the mov mov a; the first

5 bits are fixed.

And then the next three bits will identify the register r0, r1, r2 up to r7. So, that way this

op code coding is done similarly add a has got the code as again the 5 bits will come and

this will turn out to be 2. So, this last configuration will come where these bits are

actually 0010; this 4 bits will be 0010 and after that we will have 1111 because this is R

R7. So, that way these 3 bits will correspond to 7 and this 00101. So, that will be the op

code for add a.

So, this way we can have different coding for different instructions and they have got; so,

that is, so, they have got the uniformity. So, this will be in this format.

(Refer Slide Time: 18:07)

On the other end we if we have talking about this register indirect addressing then we

know that only two registers are allowed like r0 and r1 ok. So, we can have i equal to 0

or i equal to 1. So, the 1 bit is sufficient at the end to identify that this is r0 or r1. So,

when you say that mov a comma at the rate R1. So, that is coded as E 7 then similarly

mov c a comma at the rate a plus dptr. So, this will be coded as 93, then this mov c a

comma at the rate a plus PC. So, that will be coded as 83; so, this way this will be done

mov x at the rate DPTR comma a. So, this will be accessing this thing.

(Refer Slide Time: 18:56)

Then we have got the relative addressing. So, the relative addressing is one category of

this comes in the context of jump instruction.

(Refer Slide Time: 19:17)

So, so if you if we see this jump or this JMP instruction; in general so, with all these

jump operations that we have. So, in; if you look into any processor the instructions are

like some op code for jump and then the address to where you want to jump. So, typical

example say in a 0 8 5 we have sense jump 2000 H. So, this is what it does it loads the

program counter with the value 2000.

So, that the next instruction executed is the instruction stored at location 2000 so, this

jump we can have different type of classification. One classification is from the

functionality which is conditional versus unconditional; conditional jump versus

unconditional jump. So, this we have seen like we have got jump on (Refer Time: 20:18)

jump on 0, jump on not 0. So, they are conditional jumps and we have got unconditional

jumps like the JMP instruction.

Another classification of this jump can be like this absolute jump and relative jump ;

absolute jump and relative jump. So, what is it? Like say suppose at present we are

executing; we are at location memory location 1000 and there I am putting; from here I

want to go to the location 1500; put a jump instruction there. So, that the next instruction

executed is the instruction at location 1500; now this is fine.

So, execution will be fine. So, here what is happening is I am telling specifically that

what is the destination address; destination address is specified directly. So, you can say

that destination specified directly. Another way of doing the same thing is to tell that it is

jump by plus 500 locations. So, something like that; so, at present I am at 1000. So, if I

say plus 500; so, with respect to current location, you go forward by 500 locations. So,

this means that go forward by 500 locations ok. So, when I go forward by 500 location;

so, after executing this one or this one the effect is same.

So, it comes to this address only, but the way we are telling it is different. Similarly you

can say jump minus 400 so, that you go back to location 600 in the execution. So, that

way we can do both forward and backward jumps and. So, this type of jumps so, they are

known as relative jumps. So, these; so, these are actually the relative jumps that we talk

about. Because these jumps the target address is specified relative to the current address;

relative to the current address we are telling where do you want to jump.

Now, why all these things? Why this relative jump is; so, coming into picture why is it

so, may be so, important or at all useful.

(Refer Slide Time: 23:01)

So, it is like this suppose I have written a program I have written a program and this

program has got at it is it is ah; there is an instruction like jump 1500 here or 1500 is

somewhere here. And this program is starting at location 0; now if this is my ultimately

the computers physical memory and if I assume that the program is loaded from memory

location 0.

If I assume that the program will is loaded from memory location 0; then this jump is

fine. So, this is loaded here; so, when it comes to this particular instruction. So, it

executes; so, jump 1500; so, it goes to location 1500. But next time instead of the next

time you run the program, instead of being loaded from location 0. Suppose the program

is loaded from location 5000 onwards; the program is loaded from location 5000

onwards then what happens is that this jump or.

So, this 1500 address; so, this is no more 1500; this is basically 6500. So, again I have to

make this correction in this program. So, this should be jump 6500; so, if you are using

absolute jump then every time the program is loaded from a different address, this jump

addresses they are to be corrected ok.

So, but if it is relative jump; so, that is not required because here is I am not telling jump

1500 what I am telling is jumped by plus 500; that means, with respect to the current

location. So, you jump forward by 500 locations and that is true here as well as it is true

here. So, there is no difference will be there even if the program is loaded from a

different address compared to the 0 address.

So, this helps in something called program relocation this relative jump. So, this helps in

the process called program relocation; that is the program may be loaded from a different

address; next time it is loaded into the memory. So, that is how this relative jumps are

going to be useful.

So, these processors they have got this relative jumps introduced so, that we can we can

do this relocation jobs easily. Like when you are thinking about any complex system,

then we have to have these many user programs loaded into memory. And it is not

possible to ensure that always the program will be loaded from the same address.

So, this relative jump will be like this; so, this is say it is like it is an 11 bit sorry; this is

an the sjmp instruction; sjmp and then the address where you want to jump. So, this sjmp

is structure is op code followed by this relative address and this relative address is in the

range of minus 128 to plus 127. So, you can jump by within 256 locations from the

current location.

So, you can go back maximum 128 bytes and you can come forward at most 127 bytes.

So, if you have the machine code is 80 for this sjmp and then this upward this relative

address may be minus 2. So, minus 2 is coded as FE; so, this if here is. So, actually if

you look into this instruction the coding of this sjmp here; so, this sjmp here instruction.

So, this is a 2 byte instruction so, if the address if this instruction is at location 1000, then

this location 1000 will have the code for is the op code part. So, this is the op code part

and the location 1001 will have the this relative address part; the second part.

So, first one is this one, second byte is this one. So, the next instruction; so, if you look

into the memory at location 1000 you have got the first byte of op; at the location 1001

you have got the second byte this value. Now after that the PC value becomes 1002; now

from; so, after when this instruction has been faced by the processor; so, the PC value is

equal to 1002. So, from there we want to go back to sjmp here and here is 1000. So, from

1002 we want to go back to 1000; so, we need to go back by two locations.

So, this relative address becomes equal to minus 2. So, while coding it; so, the first byte

will be the code for this sjmp 80 and the second byte will be minus 2. So, that when this

instruction is executed with the current PC value is 1002 with that this minus 2 will be

added and it will be going to location 1000. So, there that is why; so, this is the coding of

this sjmp here this instruction will be 80 FE and the FE value is equal to minus 2.

Similarly, we can have some other absolute addressing. So, we will see that absolute

addressing there sjmp; there the ajmp and ljmp type of instructions that we will see later.

