
Microprocessors and Microcontrollers
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 25
8051 Microcontroller (Contd.)

As far as address multiplexing is concerned we have got 8051 when it is connected to

one external program memory that is EPROM.

(Refer Slide Time: 00:23)

So, this is the external address bus from Port0. So, we have got this Port 0 we. So, Port 2

is providing the higher order address bus A to A 15 bits. Port 0 is the multiplexed

addressed data bus. So, this is passed through one 7 4 3 7 3 latch for multiplexing for de

multiplexing the lower order address bus and the ALE signal is connected to g pin of 7 4

3 7 3 by which we can when this ale signal is activated address is available in the bus and

that gets latched here.

So, as far as this EPROM is concerned, it continually seize the address bus address bits 8

0 2 a 7 a to a 15 and a when this PSEN bar line is activated. So, it is connected to the v

bar pin of this EPROM chip. So, v bar is same as read bar as we said. So, it is. So, output

enable. So, read bar line. So, when this lines are given. So, EPROM will put the content

on the data bus and the data bus through port 0 will reach 8051. So, in this way we can

connect external program memory to the 8051 chip.

So, we also call it external code memory because this external program memory is

generally holding the program of course, in some cases you can connect you and put the

data they are as well, but for general generally. So, that will also be treated as code only.

(Refer Slide Time: 01:56)

Ah. So, if we look into the timing diagram. So, if this is the oscillator clock that we have.

So, we have got this ALE signal. So, they are activated at this point. So, when the ale

signal is of following. So, at that time the pc the Port whatever on Port 0, this lower order

address bits will be put and that will get that will be sensed here. So, that will that will

get latched at this point and when after that this PSEN bar line will go low. So, when is

PSEN bar line goes makes a transition from low to high. So, that is taken as the point at

which the data bus will have the Opcode available.

So, at this point; in between this activation of pc low and this activation of this PSEN

bar. So, memory is expected to put the Opcode on to the data bus. So, Opcode will be

available any time like this and when is PSEN bar line makes a transition from low to

high then only the Opcode will be taken of by the memory. So, it is the protocol the

memory should keep the Opcode available for that much amount of time and then this

8051 will sense this Opcode through this PSEN bar line and this value is read here again

later sometime the ale signal will go low and when it is going low. So, it will be used as

the value to latch the lower order address bus to a lower address on the Port 0 that lower

order address bus.

So, you see that this signals when they are falling. So, they are used for they are used for

sensing the values or similarly this ale signal is when it is making the transition high to

low. So, they are actually taken as the triggering point and this PSEN bar line. So, when

it is since it is PSEN bar then it is the this complementation is there. So, when it makes

the transition from low to high. So, that point is taken as the triggering point for the

memory to put the data.

(Refer Slide Time: 04:08)

So, this way this whole operation takes place the external code memory access reading

takes place this in this fashion. On the other hand if we look into the data memory

connection external data memory connection then we have got the connection like this.

So, here also. So, we have got one say suppose we are going to connect one Kilo Byte of

RAM suppose the RAM we are connecting is only one Kilo Byte of long. So, we have

one Kilo Byte means. So, they it the RAM will have 10 address lines.

So, this lower address bus that A0 to A7 they should be have connected and this A8 and

A9. So, this memory chip has got 10 address lines A0 to A9. So, A0 to A7 will come

from Port 0 the through this multiplexing through this demultiplexing of the address bus

by 7 4 3 7 3 and this A8 and A9. So, this two are coming from the Port 2’s bit number 0

and bit number 1. So, the rest of the bits are not connected. So, as we know that it may

lead to folding and all that. So, we will not go in to that. So, other bits being do not care.

So, there that can lead to folding.

Then the read bar line that we have. So, read bar line is connected to the v bar or output

enable of this ram chip and the right bar line is connected to the right pin of the a RAM

chip. So, the there is no other decoding done. So, this cs bar pin is grounded. So, this

RAM is always enabled. So, whenever the address is put on to the address bus and this

signals read bar or write bar is given the content of the memory cell will be available on

the data bus to be read by Port 0.

So, apart from that this PSEN bar line we will have no connection. So, if you are not

having any external EPROM then this PSEN bar will never be connected and this if it is

if the EPROM is there then that PSEN bar line may be connected to the EPROM and this

ea bar line also the external access. So, that is that is connected to high because this is

not doing an external access as far as the code is concerned this is not code access. So,

this is data access. So, there is no problem and.

(Refer Slide Time: 06:23)

The timing diagram again. So, this external data memory access is done by the MOVX

instruction we will look into this MOVX instruction in detail later, but essentially it is

format is something like this.

So, it is like MOVX at the rate DPTR sorry MOVX at the rate DPTR comma A or

another option is the other way. So, other the it is for getting the data from A register into

a memory location pointed to by the DPTR register pair and there is another version for

storing for getting the content of memory location to the accumulator. So, there you just

write it as MOVX A comma at the rate DPTR ok.

So, those are 2 versions of the MOVX instructions. So, they are for external data

memory access for external data memory access. So, it uses the MOVX it uses the

MOVX comment or MOVX instruction. So, how does it operate. So, you see that first it

has to get the instruction from memory; for that purpose, assuming that this Opcode this

instruction is in the external memory. So, this is the PSEN bar line is activated. So, that

you get the Opcode from the external ROM external EPROM.

So, that is though this apart we have already discussed how to access this external ROM

ale signal is activated the address is given lower order address given the higher order

address is put on the pc high and this PSEN bar line is given when PSEN bar is going

high the data the Opcode MOVX Opcode is available a on to the data bus then the

decoder will decode that MOVX instruction and now it will go in to the second stage

second stage and in that second stage it has to it puts the read bar line.

So, DPHigh the DPTR register it is consisting of two pairs DPHigh DPH and DPL to 8

bit register whereas, DPTR is the 16 bit register. So, this DPHigh. So, that will be put

onto Port 2 because through that this external address bus will be connected to the

external RAM. So, it will be put there and this DPL. So, this will be this is again

multiplexed with data bus. So, that is the Port 0. So, these value this. So, lower order

address bus is multiplexed. So, in the lower order address bus put the value DPL.

So, high order address bus has got the content of DPH lower address bus has the control

of the content or DPL and then this read bar signal is activated when this read bar signal

makes a transition from low to high by that time from the ram the external ram the data

should be available on to the data bus. So, on this rising edge the value will be picked up

by the 8051 chip and again the. So, so that is the. So, MOVX instruction is complete. So,

data is since it is it is basically reading the content of memory location into A register.

So, read bar signal is given similarly if you want to write like if you want to write the

content of A register on to external dat[A]- on to external memory.

So, in that case right bar signal should be given and here instead of coming from external

data input it will be from the A register the accumulator.

(Refer Slide Time: 10:14)

Register. So, this how this connection is done like external code memory so for external

code memory connection. So, we have got this um this higher order address bus P2

provided by Port 2. So, 2 point 0 2 to 2.7 they are connected to A to A 15 then Port 0

provides the multiplexed address data bus.

So, this 8 bits they are connected to the data bus of the RAM chip and a data bus of the

ROM chip and also it goes to the latch 7 4 here 7 3 latch where it is de multiplexed by

the ale signal and. So, this is. So, this is the this is the demultiplexed address bus this is

the demultiplexed data bus ALE signal is connected to the g pin of 7 4 3 7 3 PSEN bar

line is connected to OE bar and CS bar line is grounded and this EA bar line is grounded.

So, that is it does not have any meaning because it is not the data access. So, it does not

have any meaning.

(Refer Slide Time: 11:22)

So, for external data memory access, this is the thing that is a right bar line is connected

to write bar read bar line is connected to read bar PSEN bar. So, PSEN are is not

necessary in this case. So, if the connection is not shown here PSEN bar is not

meaningful ALE is ALE signal is connected to G. So, rest of the thing is unaltered. So, P

0 to 7 goes to this latching of latching of this lower order address bus here and the data

bus is connected to D0 to D7.

So, this EA bar. So, this is connected to ground meaning that is the external memory

access. So, this EA bar line is grounded in the previous case also this A bar line was

grounded because we were doing memory external memory access. So, in both the cases

external memory, there will be some more detail the where will see how this EA bar line

makes difference between this external line access and internal access.

So, since here we are doing external access. So, EA bar pin should be grounded and for

that code memory access also since we are doing external memory access this EA bar

line should be grounded.

(Refer Slide Time: 12:40)

So, next we look into how can we overlap this external code and data spaces. So, this is

very simple because if we if like instead of using a separate EPROM for storing the

program. So, many cases what happens is that we put with the micro controller our single

externally you put a single RAM chip and in that ram chip. So, it acts both as program

memory and data memory.

So, for that purpose what we have to do is we take the RAM chip and then this right bar

line of the processor is connected to the right bar line of the RAM and this RD bar and

PSEN bar they are odd and they are that is connected to the OE bar line. So, which ever

signal is activated. So, RD bar or PSEN bar. So, both the cases, OE bar line will get

activated. So, this RAM will be providing the data.

So, read bar is activated when it is doing when it is doing say data access and PSEN bar

is activated when it is doing program access since, program and data both of them are

residing in the memory in the RAM. So, we need to access RAM in both the cases. So,

this is a very common practice for systems that have got limited amount of external

memory. So, we do not put separate ROM and RAM. So, we put a RAM that also serves

the purpose of the ROM.

So, this is how we do that overlapping. So, this read bar and PSEN bar. So, those two

lines are ended and it is given to the read bar line. So, any of them being

(Refer Slide Time: 14:14)

Low this read bar line will be low. So, we will get that corresponding signal here telling

that it is a it is read operation similarly write bar line is connected to the write bar pin of

the RAM. So, rest of thing we have already discussed. So, this is the only additional

thing that we have to do this putting off and of read bar and PSEN bar for doing the

overlapping of code and data spaces.

(Refer Slide Time: 14:38)

So, what is the advantage first of all this overlapping of code and dataspace is it allows

the RAM to be written as data memory, and read as the data memory as well as code

memory. So, while. So, no code memory is in general ROM. So, we do not write there

we just read the data we just read the code from there and the constants that we have in

the program. So, they can also be treated as code and those constants are also kept in the

ROM ok.

So, if you are using RAM then for write for operations. So, you can use the right bar pin

access and then. So, we can write the values on to the RAM as data memory and if you

are trying to access the program then you can use that PSEN bar or if you are trying to

access the data part of the RAM then you can use the read bar line. So, we can. So, what

is the advantage of doing all this things? So, this will allow a program to be downloaded

from outside into the RAM as data and executed from RAM as code.

So, many times what happens is that with this microcontroller based systems. So, they

have got interface with program with personal computers and then that through a

download cable we download the program into the kit. So, the program is first developed

on the pc. So, we do the simulation and all that. So, when we are satisfied we generate

the object code for that program on the pc and then that object code is downloaded onto

the 8051 kit and when we are doing this. So, if it is ROM then we have to go for

programming of that ROM and that is costly because again if we want to change

something erasing will also become bit difficult compared to RAM.

So, instead of that if we have got RAM to be used as the code memory as well then we

can just write the we can just write the values on to the RAM. So, that way the entire

program can be downloaded into the RAM and then we can use that RAM both for

program as well as data.

(Refer Slide Time: 16:55)

So, if you look into the memory structure that we have. So, the program memory

structure is like this. So, we have got this the total address space total address line that

8051 has is 16 bit. So, that is address bus is 16 bit. So, the address total address range is

0000 to FFFF.

Now,. So, you are your the access is from it starts with 0000 onwards now if you make

this a EA bar equal to one so; that means, we are accessing from the internal memory and

if you make EA bar equal to 0 it will access from the data memory. So, in case of if you

do it like this then what happens is that you have got this part. So, you can put your

entire program in the external memory so that in that case we will make A bar equal to 0

and this if you have got for K address space then this 4K sorry; the when A bar is 0 your

entire memory external memory will be acting as the external EPROM that we have.

So, externally we connect 64K. So, type of program memory and then this through this

PSEN bar line activation. So, this entire external chip will be accessed whereas, if you

make this EA bar line equal to one then for initial access. So, it will be using the internal

internal memory, but after that it will be using the external memory once it finishes once

it finishes this maximum address for example, in 8051 we have 4 Kilo Byte of internals

memory internal ROM. So, when this is over when this is over from the next address

onwards. So, it will be accessing this eternal memory.

On the other hand, this for data memory part, we have got this 00 to FF. So, that much

will be internal memory and from FF onwards. So, it will be accessing the external

memory. So, from because only 128 Bytes are there for the internal memory, first this 00

to 127, it will be internal memory and 128 onwards. So, it will be accessing external

memory and that is detected by the MOVX instruction.

So, whenever you are using MOVX instructions. So, it will be using the external

memory and whenever you are using MOV instruction. So, it will be using internal

memory. So, will see that there are two data movement instruction one is sorry one is

MOV and the other is MOVX. So, MOV is for internal access. So, this is internal and

there is a MOVX instruction that we have seen. So, MOVX is for external.

So, if you are using MOVX then it will be using this external memory if you are using

MOV it will be using this internal memory. So, that is the 8051 policy. So, for int. So,

you can say in some sense I can say that the total data memory that 8051 will have in that

case is 64K here plus this 128 Byte internal.

So, this 64K external plus this 128 Byte internal, that is the total data memory we can

have for the program memory side it happens if a bar is equal to 0 then the total at total

then it will be accessing for whenever it is accessing may programs. So, it will be

accessing this external memory; however, if this A bar line is equal to 1 and the this

maximum address is say 4K then for the address range 0 to 4K for 0 to 4K it will be

accessing this memory and when the address goes beyond this 4K it will be accessing

this external memory ok.

So, if EA bar line equal to one then for address between 0 and 4K it will access internal

memory internal ROM and beyond 4K it will use the external ROM whereas, if A bar

line is equal to 0 in that case for any address it will go to the external memory for getting

the Opcode or getting the instruction. So, that makes it very flexible. So, we can have we

can we can configure this system as per our requirement.

In many of the microcontroller development kits, they do it like this. So, they just map

this external a entire memory as the external memory only and you can do that or in

many or in some other cases what is done is this a bar line equal to it will be made equal

to one. So, the when it is accessing the internal memory, that is made to hold the

operating system code monitor programs and all that and the user programs are all in the

external memory. So, it is also done that way.

(Refer Slide Time: 22:14)

So, if we look into this one chip memory in more detail. So, you can find that. So, there

are there is a total we have got two fifty six Bytes. So, out of that, 128 Byte that is 0 to

7F, we will have some special feature and remaining 80 to FF. So, we will have some

other feature first of all 0 to 1F. So, we have got some say general purpose registers. So,

they are the CPU registers. So, unlike your microprocessor like 8085, we do not have

separate CPU registers because now the memory that the internal memory is also a part

of the of the chip. So, there is no point keeping something in the CPU separately

compared to the memory.

So, that is why this registers. So, they are nothing, but some locations in the internal

RAM. So, 0 to 1f. So, that is we have got this general purpose registers then the location

20 to 2F they are they are bit addressable. So, int you can you. So, you can access

individual bits as we know that the memory has got a word size. So, that word size is in

whatever we have discussed they are eight bit word. So, if you are accessing a location

means you are accessing eight bits at a time, but in many cases we want to access

individual bits separately and for that purpose we there is a portion of memory which is

bit addressable.

So, this 20 to 120, if there are some bit numbers will be given. So, we will see that. So,

this location 20 is eight bit wide and each of this locations can be accessed separately

they can be set and reset separately then 30 to 7F we have got this is the scratch pad that

we have. So, this is for this is for some other purpose. So, you can use them as temporary

locations sometimes we use them as stack location etcetera. So, it is done like that and

after that we have got some eighty to f those locations.

So, upper 128 RAM. So, for, that is some extra locations that we have. So, this where is

this lower part? So, you can use both direct and indirect addressing. So, we can have

only indirect addressing here or we can have direct addressing for the special function

registers. So, we will explain them as you proceed.

(Refer Slide Time: 24:48)

So, this is the first part the CPU registers that we talked about. So, the registers, we there

are actually 32 registers and this each this thirty two registers they are divided into four

banks Bank 0, Bank 1, Bank 2 and Bank 3 at any point of time only one bank of registers

is active.

So, this is the lowest bank having the registers R0 to R7 then we have got bank one

going from R0 to R7. So, like that we have got different registered banks. So, this is the

general purpose register Bank 0 to 1F and at you can control this bank selection by two

bits in the processor status word register which are known as PSW 2 and 3. So, PSW is

the processor status word register it is bit numbers 2 and 3 they can be used to select the

registered bank.

So, this is helpful because what happens if previously while discussing on 8085 we have

seen that if we are going from one program we executing on program and an interrupt

occurs then it is the responsibility of the interrupt service routine to save all the registers

that it is going to use in the body before doing any operation because the if program

which got interrupted may be using those values and again while going back it should

restore all those register values before the write 10 instruction.

Now, that is costly because. So, many steps are to be done. So, in this case in 8051 we

have got the flexibility that we can just switch between the banks may be the main

program is using Bank0. So, when we are in the interrupt service routine. So, we can

simply switch over to Bank 1. So, that all the manipulations that this is the interrupt

service routine will be doing. So, they will be affecting bank one registers. So, Bank 0

registers they will remain unaltered

So, later on while coming back from the sub program or sub routine, you can just switch

the banks again. So, that the original bank gets restored. So, this helps in the context

switching process. So, context switching becomes faster. So, since embedded

applications, we want to have faster contexts which to respond in real time fashion. So,

this is help full.

