
Microprocessors and Microcontrollers
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 20
8085 Microprocessors (Contd.)

When we are talking about this data transfer, so it can be classified into two categories,

one category is synchronous data transfer.

(Refer Slide Time: 00:23)

When the transmission between the two devices they are with respect to a common

clock, if we have a common clock like if this is the transmitter and this is the receiver.

So, this data transfer takes place and they are driven by a common clock signal. So, this

type of transfer they are known as synchronous data transfer. So, sequence of

synchronizing signal can be sent before the communication take place.

So, like for the telling that I want to simple, I want to the same data now, so that way this

clock is acting as the synchronization signal. So, that way or it may be that there are

some signals that are sent from transmitter to receiver telling that it is going to start the

communication and data if the bit rate and everything can be received and this is usually

high speed data transmission. So, we have got no transmission of the range, range of 2

kilo bits per second and things like that and it is a message based communication.

So, synchronization occurs at the beginning of a long message. So, if you are sending a

long message at the beginnings of synchronization bits are sent so that the transmitter

and receiver they get synchronized and then the data transfer starts. So, this way we can

have this synchronous data transfer.

(Refer Slide Time: 01:52)

On the other hand we can have a synchronous data transfer where the transmission can

occur at any point of time. So, and it is character based transmission every character will

be sent separately and it is less low speed transmission less than 20 kilo bits per second.

However, the advantage is that we do not need any synchronization sequence between

the transmitter and receiver so that way the communication overhead is less you can say.

(Refer Slide Time: 02:21)

So, the generally the standard that is followed is like this. The line is normally at logic

one. So, when nothing no, no transmission is taking place between the devices. So, line

is at logic high. So, it is like this. So, it is at logic high then. So, this is the one is called

mark and logic 0 is called a space. So, when you are transmitting a bit, so the bit sorry,

when you are transmitting a transmitting a bit. So, this bit may be logic high or logic low.

So, we can have these two devices. So, this bit that is transmitting. So, it may be 1 or it

may be 0. So, in the transmission terminology, this 1 will be called a mark this is a

technical term for mark and for 0 is called a space some sort. So, this is a very old

nomenclature, but that is followed in the literature. So, we have got this mark and space.

And transmission begins with a start bit which is low. So, you can understand from this

diagram that we have got this thing initially it is high and then this low it means that the

this is the start bit fine. Then after that 7 or 8 bits are transmitted representing the

character that we want to transmit. So, this D 0 to D 2 are the bits that are transmitted.

So, normally we are transmitting in ASCII code. So, ASCII is a 7 bit code or if you go to

extended ASCII says 8 bit code or then there is a EBCDIC coding which is 8 bit code.

So, that way whatever be the coding, those 8 bits will be transmitted and the transmission

is concluded by 2 stop bits.

So, these are the 2 stop bits which are high for 2 successive clock cycles and then

successive clock 2 successive bit times and then they will be taken as the end of the

transmission. So, again for if you are going to transmit the next characters again here to

send a start bit and send the next character. So, this way this asynchronous data

transmission will take place.

Now, between the episode, in this transmission, we can have this type of classification

simplex, duplex and half-duplex; simplex, half-duplex and full-duplex.

(Refer Slide Time: 04:49)

So, simplex is one way transmission. So, it probably there is a there are two devices and

out of them one of them is a master other one is a slave and data transfer is always either

data transfer is always from the master to the slave or it is always from slave to master

only in one direction. So, it cannot be in both the directions.

Half-duplex means that transmission can take place in both the directions, but any at any

point of time. So, it is in a single direction only. So, that is half-duplex type of

communication and we have got full-duplex where the data flows both ways at the same

time. So, we can have this, so half of this simplex transmission means, so it is, that the

direction is fixed. So, if this is the transmitter and this is the receiver the directional

transmission is always from the transmitter to the receiver.

Then in case of, in case, it is very simple. So, only one wire is needed to connect

between the devices. So, typical example may be a communication from computer to

printer. So, of course, there are some status checks and all that. So, ignoring those

statistics actual the data transfer is from the computer to the printer only. So, that way it

is a simplex type of connection. Then half-duplex connection, here this data transfer can

be both in both the directions. So, at some point of time it is from device one to device

two sometimes it is from device 2 to device 1. So, typical example is the telephone line

where two people are talking, at one point of time at one point of time the line is in one

direction only, and it switches continually and. So, that it at some point of for some time

it is in from person 1 to person 2 and again in the next slot it is from person 2 to person

1, but this happens so fast that we may not be able to understand that switching.

So, in this case also one wire is sufficient and the best connection is the full-duplex

connection. So, you have two wires will be needed. So, we have transmitting and the

transmission and receiving where so they are separate. So, we can have the transmitter

and the receiver. So, this, this is a device 1, this is device 2. So, this is transmit data

which is the known as TX D and this is the received data. Similarly for this side we have

got the transmit data, we have got transmit data here and the receive data here. So, this

way we can have this we can have this transmission and receiving taking place

simultaneously.

So, in this case two wires are necessary one for transmission and one for receiving and.

So, it is like communication between two computers. So, we have got this full-duplex

communication.

(Refer Slide Time: 08:13)

Next important thing is the rate of transmission. So, parallel transmission. So, all 8 bits

are sent simultaneously. So, if you are sending one character at a time. So, even for

parallel communication all the 8 bits will go together. For serial transmission the bits will

be sent one at a time. So, 1 1 bit will go at a time and so it will take longer time. So, we

have to endure because the bits will go serially and since that transmission and receiving

devices. So, they may not be operating on the same clock. So, we have to have a have an

agreement like how long is one bit time. So, as you if you look into this diagram, if you

look into this diagram you see that I have said that this is D 0 this is D 1. So, apparently

it seems that this is the this D 0 D 1 say demarcation point like when D 0 ends and D 1

starts. So, there must be an agreement about what is the duration of this bit D 0. So, what

is the individual bit durations. So, this transmitter should activate the value of D 0 for

that much time and receiver should expect that value of D 0 within that time, so that way

that that agreement should be there.

So, there needs to be an agreement on how long each bit stays on the line. So, rate of

transmission is measured at bits per second or baud. So, how many bits you are

transmitting per second. So, once this ball bit rate is fixed bit rate is agreed upon the

transmitter and receiver can find out what is the bit time. So, for that bit time the

individual bits will be sent.

(Refer Slide Time: 09:53)

So, we have got for a certain baud rate how long should it each bit last. So, you can find

out like baud bits per second. So, second per seconds divided by bits is 1 baud. So, at

1200 baud a bit will last 1 by 1200 0.83 millisecond. Now, this term board is slightly

misnomer in here because in communication technology. So, this baud is the symbols per

second, but here we are taking each bit as a symbol so we will be simply talking them as

bits per second keeping in mind that body is actually symbols per second. So, this 1200

baud rate, we can say that individual bits will life or will be therefore, 1 by 1200, 0.83

millisecond. So, this bit timing is fixed.

(Refer Slide Time: 10:44)

And then to transmit a character shape, we want to send this character a over serial

communication line at a board rate of 56.6 kilo. Now, first of all we find out the ASCII of

a ASCII of a is forty one hicks that is 65 decimal. So, this is the corresponding 8 bit

pattern. So, now, we have to add one start bit and two stop bits. So, first this start bit will

go, then this bit pattern will go and then two stop bits will go total 8 plus 9, 8 plus 1, 9

plus 2, 11 bits are to be transmitted.

Now, at 56.6 kilo baud rate, the each bit timing is 17.66 microsecond and so we have to

set up a delay loop for 17.66 microsecond after sending one character serially. So, we

have to wait for this much of time and after that only we should change the change to the

next bit. So, we have to set up a loop for this way at 17.66 micro second and then this

and say the transmission line two different bits for the duration of the loop so that way

we have to do the serial transmission.

(Refer Slide Time: 12:02)

Another important issue with the serial transmission is the error checking. So, there can

be various types of errors that can come while transmission is taking place. So, some of

the bits may be modified some messages may not be received at all. So, like that, there

are different types of errors depending upon the transmission policy that we are

following.

So, we have to have some additional information sent to check at the receiver whether

this transmission had some error or not. So, there are two very popular techniques for

doing it, one is called parity checking and another is the checksum. So, parity checking is

actually checking whether the total number of 1’s in the bit stream that has been

transmitted is even or odd.

So, two systems that, the two devices before starting the communication they can agree

upon the policy like they can say that we will accept odd parity means the number of 1’s

transmitted must be odd always odd or they may agree upon an even parity they are

telling that number 1’s transmitted is always even.

(Refer Slide Time: 13:10)

So, if this is that bit stream that is transmitted. So, if this is the bit stream so, if some bit

stream is transmitted in that bit stream. So, we can say that if this is the bit stream to be

transmitted and this bit stream has got say even the odd number even number of 1s. So,

bit stream may be 1 1 0 1 1 0 0 0 this may be the 8 bits transmitted. So, we have a parity

bit at the end of it. So, this bit is called parity bit and this parity bit, if we say that we will

follow odd parity then this bit will be set to 1 and if we say that we will follow even

parity then this bit will be set to 0.

So, at the receiving end if any of these bits get corrupted say this bit has changed from 0

to 1. So, when you compute the parity at the receiving end. So, it will not match. So, we

can check that there is a problem with the bit that is the bit stream that has been

transmitted. So, though we cannot detect like what exactly has gone wrong, but we know

that something has gone wrong and we can go we can try out retransmission of the bit

stream.

So, another possibility is to use of checksum. So, this parity is very rudimentary type of

checks the checksum means it computes some polynomial based on this bit stream that

has been transmitted and the reminder of the polynomial. So, that is added at the end of

the bit stream to as a pattern and at the receiving end which again check it. So, the multi

errors may be detected by using this checksum facility. So, they are for checking, but not

correction that they will indicate that a error has occurred and they do not say like where

and where is the error that cannot be told by these schemes.

So, next we will see the parity checking. So, the number of 1’s in the as I was telling. So,

to make the number of 1’s in the data odd or even, ASCII is 7 bit code. So, we have got 1

bit extra. So, bit D of the parity into. So, we can 7 bit ASCII code is there. So, we can

add another bit for parity information. So, making a total 8 bit now for even parity the

transmitter will count number of 1’s in the data if the number of once is an odd number

then this bit D will be set to 1 and make the total number of 1’s even and if the receiver

will calculate the parity at the received message and it will again calculate the value of D

and if the calculated value matches with the received D value; that means, it will assume

that there is no error. Of course it does not guarantee because. So, if multiple bits got

corrupted then there may be problem, but in general, for most of the cases. So, this may

be correct.

(Refer Slide Time: 16:15)

So, when you are got a when you have got larger blocks of data transmission. So, for

example, you are transmitting data from disk to the computer or to the memory then

there can be even the more number of, if you are relying on this parity and all that then

after transmitting every bit every per character you have to do this parity bit. So, that

may be over it may be high. So, instead of that, after transmitting one block of data. So,

we add the check bits that is the checksum. So, transmitter adds all the bytes in the

message without carries and then calculate the 2’s complement of the result and same

that as the last byte. So, this is one possible way of calculating checksum.

The other one I was telling is by means of some polynomial. So, the entire message is

represented as a and then it is computing some reminder that polynomial is divided by a

fixed polynomial and it will be the reminder is put as the checksum. So, that is other

policy. So, this way whatever be the policy, ultimately it comes up with a signature and

that signature or the reminder whatever we call it so that will be put at the end of the

message and the receiver will.

So, that way and this signature will be checked at the receiving end. So, the for the

policy where all the bytes were added like the policy that is detailed here all the bytes are

added and the result we complete compute the 2’s complement of the result and same as

the last byte. So, what happens is that that we are after taking the sum we are negating

the sum and sending it to the receiver.

The receiver after adding all the bytes, it will get the plus of that sum signal whose sign

sig sign will be positive and when the last byte will be added the result should become 0

the result does not become 0; that means, there is some error. So, that is why it is called

checksum type of things. So, it is putting the checksum value at the end of the bytes that

are transmitted.

(Refer Slide Time: 18:24)

A very standard communication protocol that is used for quite a long time since 1960s

onwards is the RS 232 type of protocol and there are many variants of it say we have got

422, 489 like that.

So, this is a communication standard for connecting computers to printers modems

etcetera and it is defined in 1950s. So, it uses to the voltage levels plus 15 volt and minus

15 volts, so minus 15 volt is taken as logic high and plus 15 volt is taken as logic low.

So, you see that when we are talking about 8085, it cannot have minus 15 and plus 15

voltage output. So, we need some other power supplies for giving these some values. So,

that is a different issue, but it is the standard takes it like that. In fact, this is a range, so

this minus 15 is actually minus 4 to minus 15 and plus 15 is plus 4 to plus 15.

So, this speed is less than 20 kilo baud rate and restricted to the distance also less than 50

feet of 15 meter. The original standard uses 25 wires to connect to devices. So, in, but

many of those wires are not connected in the communication because. So, these 25 wires,

this interface was very would say very robust type of connection and many times we do

not need that much rugged connection. So, with their devices that two computers are

located close to each other then we do not need soap rigorous connection between them.

So, only fuel of wires may be sufficient. So, it may it may be brought down to 3 wires in

the best case.

(Refer Slide Time: 20:17)

So what about the software side of this serial transmission? So, software for it is doing it

like this. So, if the transmission line is at logic 1 by default. So, as I said that the line is

logic high then it has to transmit a start bit for one complete bit length. So, bit length is

decided by determining that bit timing. So, from that we can send a start a bit for that

time and then we can transmit the character as a stream of bits with appropriate delay.

So, after transmitting every bit we have to wait for the bit time before changing it to the

next bit. After that we should calculate the parity and transmit it if needed and transmit

the appropriate number of stop bits. So, this again, these are all programmable like how

many stop bits then what is the baud rate. So, all these are programmable. So, if these

things are agreed upon to between the device and the processor. So, based on that it can

do the transmission and then the transmission line will return to logic high. So, this is

the, if you are developing the software for doing transmission. So, these are the steps to

be followed.

(Refer Slide Time: 21:29)

So, this is the protocol this is the diagram the schematic diagram that you can see that in

case of 8085 in the accumulator registers. So, we can put the value on the D 0 line the bit

that we are trying to try to transmit. So, this is the start bit that we are transmitting

suppose. So, start bit should be 1, sorry start bit should be 0. So, we are and this

accumulator has got the 8 bit pattern that we want to transmit.

So, after sending the start bit, we will be sending the first bit. So, this D 0 is put onto the

line and that is going to the after that there is a shift. So, this shift will take this 0 to this

and this one will go out. So, this 0 will be transmitted next then this way all these bits are

transmitted and when this 1 comes. So, this one comes then it will be coming like this

then after that this again the 7 bits or 7 bits is D 0 to D 6. So, that is done and then the

again another start bit may be sent and this communication will take place. So, that way

it will be taking place.

(Refer Slide Time: 22:40)

So, the flowchart is like this. That set up the bit counter set bit D 0 of A to 0. So, for the

start bit part then we wait for the bit time. So, this is the, that will help us in transmitting

the start bit, then we get the character into the accumulator then wait for the bit into a

wait for a bit time. So, then we wrote. So, this is in a loop now. So of course, you can say

that you are waiting for two bit times here, but this may be brought down also.

Rotate a left and decrement the bit counter. So, we rotate left. So, this next bit will be

coming to the D 0 pin and then will be transmitting that bit there and, it way this way it

will go on then that. So, this way it will go on and till all the bits are transmitted, when

you come to the last bit. So, it is also last bit has been transmitted. So, you add the parity

bit and the parity bit will be transmitted and then we will send the stop bits for ending the

transmission of the character.

So, for the reception part, for the receiver part, it will wait for a low to appear on the

transmission line because receiver it will see that line to be active to be high when there

is no communication and when a transmission is going to start then this line is brought

low. So, that is that will indicate a start bit. Then it will read the value of the line over

next a 8 bit lengths. So, next 8 bit, it will get over the every bit time it will sample the

line. So, it normally samples the line at the middle of the bit time to get the value that is

available on the serial on the data line.

So, that all the 8 bits are received then it will calculate the parity and compared it to a bit

8 of the characters about to bit 7 is the ASCII code and bit 8 is the parity. So, it will

compute the parity and check with the bit 8. So, if they are matching then it is fine and if

it is not so, if it is not. So, then it will check that it will tell that the character received is

not correct that is error. So, some higher level activity has to take place.

And then it will wait for the appropriate number of stop bits. So, we will check that two

stop bits if it is agreed upon then to our if it is agreed upon that only one stop bit will be

sent. So, it will wait for the appropriate number of stop bits and then that will end the

transmission of one character.

Again for the next character another start bit it will wait for the start bit to come and it

will go like this.

(Refer Slide Time: 25:19)

So, serial deception will be like this that first this bit on this bit D 7. So, it will be getting

this 0. So, this 0 will be shifted and then the accumulator content will get shifted this

way. So, ultimately the pattern, the bit stream that we have sent, so 0 1 0 0 0 1, so this bit

pattern will be appearing on to the accumulator. So, first it gets the start bit, then it will

get this, this is the first bit D 1 D 0 that is received it comes here finally. So, initially the

1 came and then ultimately that 1 got shifted. So, this 1 is coming here.

(Refer Slide Time: 26:04)

So, this is the serial reception is like this. So, it should read the input port for start bit the

start bit is not there then it will wait in the loop, if it is yes then it will wait for half bit

time and the bit is still low then it will wait for it will go it will check when the start bit

goes high. When the start bit under style, just if it is not low yet that means that was a

flicker, so that was a flicker. So, that is not accepted. And if the bit is still low that means,

it is really a start symbol start bit so that start bit. So, start bit counter is set and then this

it will go to the wait for bit time, read the input port, decrement counter and till this

process will go on till the last bit has been received, it check for check parity for the bits

that are received and then that will be the end of the transmission.

