
Microprocessors and Microcontrollers
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 17
8085 Microprocessors (Contd.)

Next we will see the interrupts process like when an interrupt occurs then how this that

interrupt is serviced in 8085, both non vectored interrupts and the vectored interrupts. So,

we will first look into the non vector interrupt.

(Refer Slide Time: 00:30)

The non vectored interrupts process is like this. First of all the process should be enabled

using the enable interrupt instruction. So, if this enable interrupt is not executed by the

processor then the processor will not be able to receive any of the interrupts.

In fact, when the processor is reset this enable interrupt, this is they all the interrupts are

enabled and for the purpose of different programs. So, it may so happen that the enable

the interrupts have been disabled through the DI instruction. So, if this EI is not done

then this interrupt will not reach the processor. So, the first thing to ensure is that the

interrupts are enabled using the EI instruction.

Now, as we know that interrupts can occur at any point of time during execution of

instructions by the processor. So, what the processor does is irrespective of the point at

which the interrupt has occurred. So, interrupts will be checked whether the processor

will check for the interrupt at the end of every instruction. So, typically in the last

machine cycle the interrupt is the interrupts are checked whether any interrupt has

occurred or not. So, we will see after a few lectures that how to decide like for how much

time this interrupts pin should be activated to get an interrupt. So, we can understand that

the interrupts should be activated for at least a complete duration of one instruction. So,

if we look into the instruction set whatever be the largest instruction execution time. So,

the interrupt must be enabled for that much of time to get the interrupt detected.

So, if the interrupt occurs then what the system does the microprocessor will first

complete executing the current instruction. So, this is very important thing to note. It is

not that interrupt has occurred and the processor will leave the execution in the middle of

middle of an instruction and go to the instead of interrupt service routine it does not

happen like that. The first thing is it does is the interrupts is the current instruction that

the processor is executing is completed and once the instruction is completed then it will

start a restart sequence, how that interrupt service routine can be started so that is the

restart sequence.

So, first of all this restart sequence will reset the interrupt flip flop this is the first thing

that is done. So, the interrupt enable a flip flop that we have seen. So, that will be

deactivated at the beginning of this restart operation and it activates the interrupt

acknowledge signal. So, this non vector to interrupts in 8085 INTR is the non vectored

interrupts line. So, when that interrupts is detected the processor will first reset the

interrupt acknowledge, interrupts flip flop and then it will activate the interrupt

acknowledge signal INTA. As we know that INTA is an active low signal, this will be

made low to make it active.

Now, the protocol is like this that interrupt acknowledge line should be connected

somehow to the device which has generated the interrupts and on getting this interrupt

acknowledgment the device should provide some address from which the interrupt

service routine has been located in the memory.

Now, as a system designer we will know like in which, at for what memory location the

interrupt service routine for a particular device has been loaded. So, the ISR address

should be provided by the device. How is it provided? It is provided by means of some

RST instructions. So, there are 8 RST instructions and any of these, these are each of

these RST instruction is of the format RST n where n is a 3 bit number and then this RST

n is a single byte instruction.

So, what happens is that upon getting this interrupt processor enters into an interrupt

acknowledge cycle. In this interrupt acknowledge machine cycle this interrupt

acknowledge pin is made low and it is expected that on the data bus the opcode for one

of the RST n instructions will be available and upon getting that particular opcode. So,

processor will decide to which address it should go and accordingly it will go to the

corresponding address.

(Refer Slide Time: 05:05)

So, when the processor executes this RST instruction received from the device it saves

the address of the next instruction in the stack. So, this is the now, it is the execution of

the RST instructions upon getting the RST instruction the first thing is that it will be

saving the return address into the stack. So, return address is saved into the stack and it

the processor will jump to the appropriate interrupts, appropriate entry in the interrupt

vector table.

And this IVT entry, it has to redirect the processor to the actual service routine. So, as I

said that each of this entire vector table either location like, so 8 such locations will

constitute to one of these RST codes and whatever be the value, based on that it will

reach a particular location in the memory in the page 0 0 2 f f in that page it will reach

that particular location and then it will start executing from that point. So, if your

interrupt service routine is located from our different address we should put a jump

instruction there. So, that now, the system jumps to the processor jumps to that particular

location.

So, that is the responsibility of the IVT until enter factor table entry. So, normally it is we

put a jump instruction there to go to the actual service routine. One thing that the service

routine should do is that it should enable the interrupts using EI instruction because as

soon as this interrupt occurs the when we go to the interrupt acknowledge cycle this or

the interrupt gets disabled the INTR gets disabled. So, it is important that the interrupt

service routine it performs on enable interrupts to re enable the interrupts process

otherwise the future interrupts will not be accepted.

And at the end of the service routine the rate instruction should be there and this rate

instruction will return the execution to the point where the program was interrupted. So,

as we have seen that when in the INTS I go in the RST opcode is getting executed. So,

system saves the return address into the stack and on getting the rate instruction that

address is retrieved and that address will be loaded into the program counter. So, that the

processor will return to the instruction which it has the instruction just after the one at

which the interrupt was received. So, that way it continues.

(Refer Slide Time: 07:51)

So, if we just, if we look into the process more clearly, so I can say that if this is the

program at which the interrupt has occurred say when the instruction. So, this particular

instruction was getting executed at that time interrupt has occurred. So, the processor

will come to this. So, on RST code will be generated from the device if this is your this is

the device. So, somehow this device will produce an opcode for RST opcode, for RST n

instruction and this will redirect the processor to some address. So, this is, this will

redirect if this is the full memory.

So, the first part is the IVT interpreter table it will take the processor to a particular

location in the IVT and in that location I can have a jump instruction jump 1000 say. So,

that my I actual ISR is loaded from 1000. And while this opcode RST one is executed the

return address that is this address has been saved into the stack. So, this address is saved

into the stack. Now, from this jump 1000, it will (Refer Time: 08:57) come here. So, one

important thing that it should do here is the enable interrupt otherwise the interrupts will

be disabled and finally, there should be a rate instruction for return.

So, when it gets the rate instruction then from the stack these address, these address will

be retrieved from the stack and the program counter will be loaded with this so that my

control comes back to this point. So, this is the sequence in which this interrupt will be

executed.

(Refer Slide Time: 09:34)

So, in case of 8085, there are 8 such restart instruction the RST instruction that I said. So,

there are 8 such instructions named RST 0, through 7 and each of this would send the

execution to a particular predetermined hardware memory address.

(Refer Slide Time: 09:38)

So, RST 0 is equivalent to call 0 0 0 0. So, it will send the control to the location 0 also it

is same as pressing the reset button activating the reset pin of the processor or this RST

0. So, it will transfer the control to the location 0 0 0 0 then RST 1 is 0 0 0 8. So, RST 2

is 0 0 1 0 that is 16 in decimal. So, you see that what is happening is that in general if the

instruction is RST n if the instruction is RST n. So, this n is multiplied by 8 and whatever

be the value. So, processor will be jumping to that particular address. So, if it is a RST 4

then 4 into 8 is 32. So, it will jump to the address 0 0 2 0 x.

So, that way at that location the interrupt service routine should exist. So, it may be a

jump instruction to the actual routine or if the routine is very small as you see that

between two successive RST locations. So, we have got 8 byte space. So, if my interrupt

service routine is very small then I can hold it in 8 bytes, so that may be sufficient or if it

is not. So, then we have should put a jump instruction and go there. So, next we will

have this, sequence is like this. So, restart sequence it has got 3 machine cycles in the

first machine cycle which is known as interrupt acknowledge cycle or INTA cycle.

(Refer Slide Time: 11:22)

So, the microprocessor sends the INTA signal. So, INTA line is made low and when the

INT is active the processor will read the data lines and it will expect that on the data bus

there will be the opcode for a specific RST instruction. As I said corresponding to the

device. So, we have to map it onto one of these RST and then that device should put that

RST opcode onto the data bus. So, this is the first machine cycle or INTA interrupt

acknowledge cycle.

The second and third machine cycles what will happen is that the 16-bit address of the

next instruction will be saved on to the stack that is the PC high and PC low those two

values will be saved onto the stack and then the processor will jump to the address to

which to the of the specified RST instruction. So, this is the whole sequence of operation

that is done in the restart sequence. So, this way the processor will be going to the

interrupting to the interrupt service routine.

(Refer Slide Time: 12:39)

Now, the location for the IVT it may not hold the complete service routine as I said. So,

the routine may be written somewhere else and we can have a jump instruction at the

ISR location to took here that may be kept in the IVT block the inter. As we have already

said that this interpreter table it may have a jump instruction only for the actual service

routine.

Now, how to generate this RST opcode. So, that is a challenge, apparently it seems that

how a device will generate the RST end instruction code. So, this is very simple in the

fact that the designers they have made this RST coding in such a fashion that way the

opcode, opcore design of RST in such a fashion that it is quite easy to generate the RST

n opcode. So, we will see how is it doing it.

(Refer Slide Time: 13:28)

As we know that is nothing, but one 8 bit pattern that 8 bit pattern has to be generated on

that response to the INTS signal. So, this is how we can we see that the RST opcode is

generated.

(Refer Slide Time: 13:36)

So, for example, suppose we are looking into the RST 5 instruction. So, in the RST

instruction opcode, if you look into the bits then these bits are fixed like say D 7 that D 6

then the D 7 D 6 then actually this bit number 5 4 and 3, so the 3 4 and 5. So, they will

contain the actual number that the opcode that are n number that we have the rest of the

bits are all 1. So, this is, 3 bit number 3 4 and 5. So, they are they will hold the pattern

one 0 one and rest of the bits are all one. So, you see that we can have a simple device,

you can have a simple tri-state buffer like this where for this particular instruction you

see only the bit 4 has to be 0. So, beat 4 is made 0 and all other bits are tied high.

Now, in the interrupt acknowledge cycle this INTA bar line will be activated as a result

this tri-state buffers will get enabled and the whatever, whatever be the content on this

side of the buffer they will be available here. And you see as a result all the bits

excepting D 4 they will get 1, only D 4 will get a 0. So, that will be treated, this D 7 to D

0. So, if it is connected to the data bus line of the processor then it will be understood as

the opcode for RST 5. So, these, any other RST instruction rest of the bits remain

unaltered only these bits bit number 3 4 and 5. So, they will be changing. So, RST is 0 to

RST 7 these bits will change from 0 0 0 to 1 1 1. So, that way we can really easily

generate the opcode for the RST.

(Refer Slide Time: 15:32)

So, this is the during interrupt technology machine cycle the first machines

microprocessor will first enable the activated INTA signal. So, this will enable the tri-

state buffers and then the values that will come on the tri-state buffer which is. So, that

will come on to the databus. So, we will place the value on to the databus and it will

come then. So, for the RST 5 port, it is EF. So, that is fine for any other opcode there are

some other any other RST some other opcode will come. So, that way this RST 5 can be

there and it RST 5 we know that it is equivalent to call 0028 H instruction. So, it will

branch to the location 0028.

(Refer Slide Time: 16:21)

Next, we answer the question that is how long should the interrupt line remain high. So,

this is a very party named question because when you are designing a device to be

operating with the microprocessor and the device will operate by we will send interrupts

to the processor. So, how long the device should be able to make that in trouble on high,

so that, it will be sensed by the processor. So, as we know, the microprocessor will check

the INTR line one clock cycle before the last T-state of each instruction.

So, if one instruction will consist of a number of machine cycles in the last machine

cycle last T-state last clock state at that point it takes for the interrupt line. So, if this

interrupt line becomes deactive before that then that interrupt will not be sensed by the

microprocessor. So, because this interrupt process is a synchronous. So, it can occur at

any point of time. So, it must remain high enough. So, that this longest instruction can be

executed and in case of 85 the longest instruction is the call instruction that takes 8een

clock cycles. So, so if he takes 18 clock cycles and this INT line is checked on the last

clock cycle. So, for 17.5 T-states the line should the line must be high.

So, you can find out the frequency of the processor multiplied by 17.5 that will tell you

where the minimum duration that for which this interrupts line must be high. So, that it

will guarantee that if the interrupt occurs the processor will definitely have a look into

that. So, this way with this answers the question that how long must the interrupt line

remain high.

And next question is how long should it remain high.

(Refer Slide Time: 18:03)

How long can the interrupts remain high? So, can I keep it high continually? So, this

question can be answered like this. The interrupt line must be deactivated before the EI

instruction is executed. Now, as I said that any interrupt service routine one of the

important job that it does is to exist is to put the instruction EI enable interrupts

somewhere and as a standard practice what is done is that this interrupt enable line is

activated just before doing anything very much useful.

So, before going into the actual routine, this is done. So, any ISR code, normally what

we do is that if this is the beginning of the ISR then first we push the registers that we

have whatever register this is our will be using all those registers are pushed and after

that we put the EI instruction. So, if somebody thinks that I do not need the register

values then this part is absent. So, EI becomes the first instruction in the interrupt service

routine and when that EI is put. So, if the EI is executed all the interrupts get enabled

again.

So, you can understand now, that if I do not deactivate that device the interrupts pin

coming from the device interrupts signal coming from the device before this EI

instruction is executed then, it will be taken as a second interrupt. So, processor may take

that inter flying as the second interrupt. So, in the worst case this is the situation that EI

can be the first instruction of the ISR and once the microprocessor starts to respond to

the INTR interrupts, INTA becomes active. So, this becomes INTA becomes active and

then EI also gets active. So, another interrupts will be taken.

So, it is a standard practice that interrupts should be turned off as soon as the INTA

signal is received. So, whenever the device receives the INTA signal from the processor

it should turn off the interrupt line. So, that should be the practice to be followed.

(Refer Slide Time: 20:32)

Now, coming to the other issues regarding a INTR interrupts can the microprocessor be

interrupted again before completion of the ISR. So, that is once the interrupt has

occurred. So, the processor is executing the ISR can it be interrupted again before

finishing the interrupt.

Now, the answer is yes and no simultaneously and it depends on the user because you

can see that you can once the interrupt has occurred the INTR will be disabled and it will

be enabled only after the EI instruction has been put. So, whenever the user feels that

now I am ready to accept the next interrupt should put the EI instruction. So, if the if the

user thinks that no more no interrupts should be coming. Now, once I am in the ISR then

EI should be at the end of the ISR and if the user thinks that after at the for the very

beginning I am going to accept next interrupt then that EI should be at the beginning of

the instead of the ISR.

So, this way, as soon as the first interrupt arrives all maskable interrupts are disabled. So,

this is done by the processor and they are enabled by executing the EI instruction. So,

now, where do you put the EI instruction is the user’s job. So, if the EI instruction is

placed early in the ISR other interact may occur before the ISR is done. So, that is the

thing.

So, the point at which you are ready to receive the next interrupt. So, you can put the EI

there.

(Refer Slide Time: 22:00)

Next we answer the question that multiple interrupts and priorities like how do I have

priorities like. So, I have so far whatever I have talked about. So, I have got a single

interrupt line and a single device connected to the processor. Now, how can I ensure that

a number of devices may be connected to the processor using the INTR line alone and

there will be priorities among the devices.

For example there may be say 8 devices connected with the microprocessor through the

INT line and there will be priority. So, the devices device 1 may have the highest priority

followed by device 2, device 3 like that. So, device lower priority into lower priority

devices they will be allowed to interrupt the processor only if the higher priority devices

they have not interrupted the processor.

So, typical design is like this that I have got all these interrupt lines coming from

different processors put them into this orgate sort of thing and then give it to the

microprocessors INTR p, but if we do this then the problem is that all these lines they are

of equal priority. So, any of the interrupts coming, it will be interrupting the processor so

that we may not want.

So, we may want that when these interrupt these device has interrupted. So, none of the

remaining one should be allowed to interrupt. Similarly the second one will be allowed

to interrupt only if the first one has not generated any interrupt. So, this is how this can

be done so that we will look now.

So, the micro processor can only respond to one signal on the INTR line. So, we must

allow the signal from only one device to reach the micro processor. So, there must be

some priority assignment for that purpose. So, how to do this?

(Refer Slide Time: 23:54)

So, for that purpose there is a special chip which is known as priority encoder or chip

number is 74366 this particular circuit it has got 8 inputs and 3 outputs.

The inputs are there this is actually a priority encoder. So, a number of devices may be

connected to this chip. So, the 8 devices can be connected to this chip and the pin to

which the device is connected will decide its priority. So, input 7 has the highest priority

input 0 has the lowest priority and these 3 outputs they will carry the index of the highest

priority active input. So, I think there is a diagram.

(Refer Slide Time: 24:38)

So, in this diagram, you see that 7 4 1 3 8. So, this is the priority encoder that we have.

So, this device, this is actually going to this is the priority encoder, so this interrupts lines

are coming from there. So, it is this I 0 to I 7. So, these are the inter planes connected

here.

Now, this one this there, there is we can put these 3 output lines. So, 8 input 3 output and

these 3 output lines. So, they can be put through some tri-state buffer and now, you see

that if say this encoder will ensure that if I 7 has occurred. So, here you will get the

pattern 1 1 1, if I 6 has occurred and I 7 has not occurred then only you will get the

pattern 1 1 0 here. So, that way whichever highest priority interrupt has occurred, so that

value that index will be available in these 3 bits.

So, this 0 will be available here only if none of the interrupts from device one to device 7

has occurred. So, I only device 0 has interrupted. So, in that case you will get the pattern

0 0 0 here. So, this priority encoder it has got an interrupt line so that is connected to the

interrupt line of the processor and in the interrupt acknowledge cycle. So, you see that

this interrupt technology cycle. So, this will enable this tri-state buffer so that these 3

beats will be available here and they are the, this for the RST instruction you know that

these other bits. So, they are all one is bit accepting this bit number 3 4 and 5 which can

vary depending upon that RST n that co value of n. So, rest of the bits are all 1. So, that

is done by this circuit tying all other bits to 1.

So, in the when the interrupt acknowledge meet in the acknowledge cycle is entered

(Refer Time: 26:34) and the processor enable this INTA bar line. So, this tri-state buffer

gets activated and all these in the RST n that n value will be available here. As a result

the processor we will see one RST n instruction into this buffer and it will go to, it will

go to the corresponding interrupt service routine.

Now, to send that how interrupt acknowledge line to the individual devices, what is

done? One decoder is in employed here 7 4 1 3 8 decoder. So, here these 3 bits are

connected these 3 bits from this tri-state buffer, they are connected here and whichever

device has been allowed whichever device has been allowed to interrupt the system the

highest priority device. So, that number is fed here. Accordingly the corresponding

output will be enabled and that will go to the interrupt acknowledge for the device.

For example if say device 6 has interrupted. So, here you will get the pattern 1 1 0 and

that 1 1 0 being fed here will enable this O 6 line and O 6 line will send the INTA signal

to the device 6 others will not. Even if say 5 out of 6 5 4 3 all of them have interrupted

only device 6 will get the interrupt acknowledge not the others. So, this way we can

handle this multiple interrupts and their priorities.

(Refer Slide Time: 28:00)

Opcodes from different RST instructions they follow a pattern bit D 5 D 4 and D 3 they

are they are having the opcode so that these bits will change and then that will give the

code for RST and 1 1 1 is RST 7 and 0 0 0 is RST 0 other bits are always 1. So, this way

we can use this decode this priority encoder for generating the RST code.

Now, the problem that we have is that the only way to change the priority of the devices

is to change the order of connecting the hardware. So, you cannot change that

dynamically. So, like if you want to change the priority between device 6 and device 7

you want to make device 6 higher priority and device 7 lower priority, but in that case I

have to connect device 6 to I 7 and device 7 to I 6. So, physically I have to change the

order, but still for the small system. So, this is fine. So, up to 8 devices, we can have this

priority encoding. So, if you have got more number of devices then possibly we can have

we can think about a multi level priority and coded scheme by which we can connect

more than 1 7 4 3 6 6 chips and resolve interrupt priorities that way.

(Refer Slide Time: 29:30)

So, this on the other hand this maskable or vectored interrupt, there are 4 masked

vectored interrupts in 8085 they are known as 5.5, 6.5, 7.5, they are RST 5.5, 6.5, 7.5.

And there is another trap instruction which is a trap interrupt which is know we will see

later. So, all of them are maskable. So, first of all this maskable interrupts are 3, 5.5 6.5

and 7.5 they are maskable interrupt. The other interrupt that I have mentioned trap is a

non maskable interrupt and they are automatically vectored. So, RST 5.5 the vector

address is 002CH, 6.5 it is 0034 and 7.5 is 003C.

So, when this interrupt occurs then the processor will jump to the location 002C then

when 6.5 occurs it will go to 0034. So, you see that address is that the 002C is between

RST 5 and RST 6, it is at the halfway between the two addresses for corresponding to

RST 5 and 6 that why it is called RST 5.5. Similarly RST 6.5 is midway between RST 6

and RST 7 those two addresses so that is why it is 6.5 and 7.5 is after 7, 4 bytes away

from 7 so that way it is 7.5. So, that is why it is the half way between the two, so it has

got the name like that.

