
Microprocessors and Microcontrollers
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture - 16
8085 Microprocessors (Contd.)

Also there has to be as many pops as there are pushes.

(Refer Slide Time: 00:27)

Otherwise what will happen? So, there will be a mismatch and in that case the return

address picked up by this return instruction will be in problem. So, let us try to see like

how this thing can happen say.

(Refer Slide Time: 00:37)

So, as you know that when I am going to subroutine, so this stack top. So, if this is the

stack top. So, it contains the return address. So, these two locations they will have the

return address.

Now, after that what at the beginning, I have done say one push. So, these push say D.

So, the d pair has been pushed here. So, this is your E register this is the d sorry this is

the d register this is the E register that is there now at the end. So, if we forget to pop the

D and we directly put a return instruction here, then in the execution of return

instruction; what will happen? So, it will try to take out the content of the top to top most

locations from stack and put them into the pc.

So, as a result when this return is executed, the PC register will get the original content

of the de pair, and which is definitely not the return address. So, that way the program

will return to some arbitrary location. So, that is why you said that, this is the other

caution that this number of push and pop must match. If there is a mismatch then or it

may so happen that I have done say 5 pushes at the beginning and 6 pops at the be at the

end.

So, if I do 5 pushes and 6 pops, and then what will happen is that this return address has

also been popped out from the stack. So, the next location whatever is there. So, that will

be a some garbage in value and that value will be loaded into the PC, when we are trying

to return. So, this push and pop must match number of push and pops their order and

these things should match.

So, we have to be careful in that sense. So, these are the things that push pop should be

used in opposite order, and number of push and pop must match and it is not advisable to

place this push and pop inside a loop, because it may so happen that a loop may exist via

different ways, and it is not it may not be ensured that in all the exits same number of

push and pops are encountered. So, that way the return at the stack content may become

erroneous and this return address may be popped out wrongly.

(Refer Slide Time: 03:13)

So, there is another version of this call and return instruction, which are known as

conditional call. So, like just like conditional jump. So, you have got conditional call;

like we have got the cc instruction. So, this will call the subroutine if the carry flag is set.

So, call subroutine if carry flag is set then CNC, it will call the subroutine if carry flag is

not set. So, we have got similarly we can have say CZ, call if the zero flag is set CNZ

call if the zero flag is not set, this way we can have many variants like then similarly for

the return also we can have RC. So, return if carry flag is set, and RNC return if carry

flag is not set.

So, this way we can have different variants whatever combinations we have called for

jump instruction all those combinations can be there for the call instruction as well.

(Refer Slide Time: 04:08)

However as a general design practice, if you are looking it from a software engineering

angle. So, if proper subroutine should have some important properties. The first one is

that it is the is only entered with a call and exited with an with a return instruction. So,

the subroutine should have a call instruction and a. So, it should be entered via a call and

return via a ret. So, that is it has got a single entry point and it has got a single exit point.

So, if we do not follow this, then what will happen is that say I am writing a subroutine.

(Refer Slide Time: 04:52)

So, this is my subroutine and there is no harm like say instead of some from somewhere

here I put a jump instruction, jump to address L 1, where L 1 is somewhere outside the

subroutine L 1 is somewhere here. But actual the return is here, but in some conditional

execution of the code it jumps from this L 1 maybe instead of a simple jump, it may be a

jump on carry or something like that some conditional jump and it jumps out of the

subroutine.

Now, if this thing is done then the measured difficulty that, you have is that now the

stack content becomes inconsistent because the stack will still have the return value

stored in the in its top. So, that is. So, or somehow we have to ensure that the stack

pointer value is modified so that the return value gets discarded. Or if this is a level say

L2 in my program in my sub program or subroutine then from outside. So, you can have

something like. So, normal if this if the first entry has got the level say subroutine sub

say suppose the name of thus it has got the name su, then what will happen is that you

will get normal exit into entry into this subroutine is like call su.

So, it will be calling the subroutine su and their putting going there. But as such in this

this is the main program. So, there is nobody is restricting you to write a statement like

say jump L2. So, we will jump in inside the subroutine. So, instead of going via this

proper entry point, you can jump inside the subroutine. And if you do that then the

difficulty is that the return address is not saved in the stack. So, when the ret instruction

will be executed in in future. So, ret will not be able to return to your proper address,

until and unless you take enough care to put the return address into the stack separately

ok.

So, these are not a very good programming practice. So, ideally you should have a single

entry point and single exit point in the subroutine, and the subroutine should be entered

through that entry point only and it should be exited in that entry was through that entry

point only. So, this is what is said here that according to software engineering practice, a

subroutine is only entered with a call and exited with a with an RET, and has a single

entry point. So, do not use a call statement to jump into different points of the same

subroutine; so ok.

So, or you can have you can you should also have a single exit point, should not be there

should be only one return statement from any subroutine. So, if you have got multiple

return statements. So, that makes the readability of the program difficult. So, we should

try to redesign that subroutine so that there is only one exit point. So, that will help in

making the program easily understandable.

So, following these rules, there should not be any confusion with push and pop usages

also. So, push and pop. So, their number should match and all that and so, if we follow

all these rules then we will be able to design good subroutine.

(Refer Slide Time: 08:25)

Next we will go into another very important concept in the processor design, which are

known as interrupts. So, so far whatever we have discussed in this course, there we have

got the processor, and processor it gets the next instruction from memory executes it.

So, there is no way by which we can tell the processor that something has happened in

the outside world, and something emergency has to be done, something exceptional has

to be done. Like say if there is if I am having a program that controls the operation of a

plant, then it controls the conveyor belt etcetera, etcetera. So, all those parts are routine.

So, they are going on at some regular intervals of time. So, my processor is doing a

generating control signals in through some programs in that way.

But suppose there is a fire that is detected there is a smoke detector. So, smoke detector

detects, if some fire or the some smoke or there is a possibility of fire. So, now, whatever

the processor was doing, it was controlling the conveyor belt. So, it should be told

immediately that something some fire handling routine has to be executed, which will

activate the fire tenders or if it will send a call to the local fire brigade office like that.

So, that has to be done.

So, that is basically the interrupt. And in our day to day life also suppose I am reading a

book sitting in my room. So, that is the normal process or some person comes and

presses the bell door bell. So, that is an interrupt. So, I have to stop the reading the book I

have to go open find out what to what that person wants and all that, do all those

operations and then again after some time when that interaction with the person is over I

will come back and read the book.

So, similarly, if in the processor also the interrupts will be like that. So, when such

situation occurs that particular service has to be done or particular routine has to be

executed by the processor and once that processing is over, the processor should resume

whatever it was doing. So, interrupt is a process where an external device can get the

attention of the micro processor. So, normally is. So, this interrupt has to be initiated by

the IO device. So, processor will not initiate it, otherwise what like if I have connected a

keyboard with a processor. Now normally this keyboard is operated by or by human

beings, they are much much slower compared to these electronic components like

processors.

Now, if the processor is operating like this that it continually scans whether any keybo

key has been placed by the user and then takes some action. Then a major part of

processors time will be spent just to do this polling like if any key has been pressed or

finding out that, A better design is like this that whenever the user presses a key the

processor will be informed that a key has been pressed, and then accordingly the

processor will try to understand which key has been pressed and take some action on that

basis.

So, this way these interrupts are actually originating from the IO device. So, IO device

they will send an interrupt to the processor, and this whole process is asynchronous. So,

asynchronous means it is not it is not synchronized with the cp the processor clock. So, it

is not mandatory that this interrupt should occur at the clock edges and things like that.

So, it is totally asynchronous, it can come at any point of time. So, whether it will be

answered by the processor or not that depends on many other things as we see it slowly,

but the occurrence is asynchronous. There can be two types of interrupts some of the

interrupts are called maskable and some of them are called non-maskable.

So, maskable means there is interrupts they can be delayed. So, you can I can say that for

the time being, I do not want to get interrupted from this source for example, as I going

back to the human being reading a book and the door bell rings. So, I if I want that I

should not be disturbed at this time, and then I can disable the doorbell switch. So, that

even if that door bell is pressed the bell will not ring.

So, that way we can make that that door bell a maskable interrupt. On the other hand if

there is a power failure or if there is some say again the smoke detector that detects fire,

that that sort of things they are they be they are non-maskable. So, we should not be able

to mod modify them. So, we should not be able to delay them. So, that should be taken

care of immediately. So, that way in a processor also depending upon the type of activity

the type of IO devices that you connect to the system, some of the devices are so critical

that we cannot stop them from interrupting the processor, and for some of them we may

we they are not that are not of that much importance. So, when the processor feels that it

can accept interrupt from those devices, it will unmask those devices those interrupts and

then are then only the interrupts can be sent from those devices otherwise not.

So, that is one type of classification. Another way of classifying interrupts is by vectored

and non-vectored. Like as I have said that whenever an interrupt occurs. So, what is done

is that the interrupt has to be serviced. Now how the processor will service interrupts?

So, processor should execute a piece of code which is pre decided, then this processor

will be like as I said that whenever this smoke detected sense and interrupt that a smoke

has been detected, the code for initiating the fire a fire tenders that should start for

activating the fire tenders that should start.

Similarly, the code for starting for the informing the fire brigade that should start; so that

way we can say that those are the addresses for the ISR these are called interrupt service

routine or ISR in short. So, these ISRs are to be loaded into the memory they are already

available in the memory. So, before the system starts the programmer has to ensure that

the interrupt service routine for all the interrupts are already in place in the memory and

for some of the interrupts these address the address of the ISR is fixed ok.

So, there are some fixed location where the corresponding ISR should be loaded. So,

whenever that interrupt occurs, the processor need not check for the ISR address. So, it

knows where to go for the ISR. So, it immediately goes to that address. Other possibility

is that they are non-vectored interrupt that is in this case when the interrupts will has

occurred the processor will ask the device to tell the interrupt service routine address.

So, processor in some way it will provide the interrupt service routine address, and the

processor will jump to that particular interrupt service routine. So, this way there can be

two types of interrupts; one is the vectored interrupts where the address of the service

routine is hard wired. So, it is known to the processor it is fixed by the processor

designers, on the other hand there are non vectored interrupts where the address of the

service routine needs to be supplied externally, from the outside world this interrupts

address should be supplied.

(Refer Slide Time: 16:17)

So, this is an emergency signal. So, microprocessor should respond to it as soon as

possible. Because that is why this has been put as an interrupt, we should be able to

respond to that interrupts as soon as possible. So, when the microprocessor receives an

interrupt signal, it suspends the currently executing program and jumps to the interrupt

service routine to respond to the incoming interrupt.

So, as I said that every interrupt has got a corresponding interrupt service routine. So, the

processor it was doing something it was executing some program, all on a sudden the

interrupt has occurred. So, the processor should has to suspend the program that it was

currently executing, and go to that interrupt service routine. Execute their interrupt

service routine and once the interrupt service routine is over, then it should resume the

original operation.

So, that is how this sequence of operation should take place.

(Refer Slide Time: 17:15)

So, the time at which you respond to the interrupts. So, that is the determined by or it

may be immediate or may be delayed. So, if it is if the interrupt is maskable or the

interrupt is non-maskable depending on that, this inter response time may vary and. So,

there are if it is immediate if the response if it is not masks the interrupt is not masked,

then it is expected that the responses will be immediate.

If the interrupt is maskable then the processor may find that interrupts some time later

when it tries to remove the mask for the interrupt, and then at that time it fin it may find

that some interrupt is waiting, and it will go and go to the interrupt service routine at that

times. So, that way whether it is masked or not. So, based on that the interrupt service

may be immediate or it may be delayed. So, there are two ways for redirecting this ISR

to the ISR or depending upon the vectored or non-vectored, that we have already seen

that if an interrupt is a vectored interrupt, then the interrupt service routine address is

known to the microprocessor. So, it can immediately go to that interrupt service routine.

On the other hand if it is a non vectored interrupt, then the interrupt service routine is not

known to the microprocessor. So, the device will have to supply. So, at least the

microprocessor has to wait for some time for the device to come up with the interrupt

service routine address. So, that way some cycles will be spent in getting the interrupt

service routine address, and that way the response will be delayed by that much time.

(Refer Slide Time: 18:57)

So, they these discussion is true for any processor. So, 8085 is one example. So, they will

see; what are the types of interrupts that 8085 has, but in general any processor will have

maskable interrupt non-maskable interrupt then it will have this vectored interrupt, non

vectored interrupt like that. So, in case of 8085; so there are a number of interrupts some

of which are maskable, some of which are non-maskable and these maskable interrupts

are controlled by one flip flop, which is known as interrupt enable flip flop. So, this

interrupt enable flip flop is not directly accessible by the user, but the user can use the

instruction like EI and DI to enable and disable this interrupt enable and disable the

interrupt.

So, EI will enable interrupts and DI will disable interrupts, and this EI and di. So, they

actually affect this interrupt enable flip flop and by setting EI will set it to one and DI

will set it to 0 that way this EI and DI will occur. So, there is only one non-maskable

interrupt in case of 8085. So, that does not get affected by this EI and DI. So, that is will

see that slowly. So, non-maskable interrupt will not get affected by EI and DI only the

maskable interrupts will get. So, the interrupt enable flip flop has got effect on non-

maskable interrupt and not on the maskable interrupt.

(Refer Slide Time: 20:27)

So, there are 5 interrupt in pins. So, if you remember the pin diagram that we have

shown for this 8085 processor. So, there are 5 special pins, the first one is the INTR there

is a there is a pin marked as intr. So, this is one of the is the only non vectored interrupt.

So, non vectored interrupt means, the interrupt address root interrupt service routine

address is not known and when this interrupt occurs. So, if a device which is connected

to this INTR line may send an interrupt to the processor via these INTR line and when

this INTR interrupt comes since it is a non vectored interrupt.

So, the processor will go to a particular execution cycle, where it will expect the device

to provide it with the ISR address and after getting that ISR address the processor will go

to that ISR. So, INTR is maskable interrupt. So, this is. So, INTR is a. So, one thing is it

is a non vector; another feature that we have got is that it is maskable. So, these EI DI

instructions can be used for enabling and disabling interrupts.

Then this are there are three more pins RST 5.5 RST 6.5 and RST 7.5. So, they are

automatically they are vectored interrupt. So, for them the ISR addresses are known to

the processor. So, they the processor will blanch to a particular address when these

interrupts occur, and all of them are maskable. So, this 5.5 6.5 7.5 all these interrupts are

maskable interrupt.

Whereas, there is another interrupt pin which is known as trap, and this is the only non-

maskable interrupt in 8085 and it is also a vectored interrupt. So, the ISR address for trap

is known and it is non-maskable interrupt; so if you the designing a system with 8085 as

the underlying processor. So, you can understand that you have to if you have to going to

connect a number of devices to the system, then they can be connected to the INTR or

they can be connected to these RST lines, and the most important of all these interrupts.

So, they should be connected to that that should be connected to that trap line; typically

with serious conditions like power failure and all that.

o, they are connected to the trap line. So, that this trap service. So, the power goes then

the system is held on the battery. So, the system should try to save all the critical data

first for the system. So, this this trap service routine may be doing that. So, it will take a

note of all the critical data that are there in the system their values and all that it should

copy them onto some safe locations and then it should go into a power down mode. So,

that way this trap can be used for the situation which is very critical.

(Refer Slide Time: 23:35)

To summarize: we have got this INTR is which is maskable and it is not vectored 5.5 6.5

7.5 they are all maskable and they are all vectored as well, and this trap is a non-

maskable interrupt and it is a vectored interrupt. So, the ISR address is known.

(Refer Slide Time: 23:55)

Now, what are these ISR at the vector address and all that? So, how do where can we

find these vectors and all that.

So, an interrupt vector is a pointer to where the ISR is stored in the memory. So, when I

say I have said that 5.5 6.5. So, they are be vectored interrupt. So, vectored interrupt

means that their address should be known. So, all interrupts vectored or otherwise they

are mapped onto a memory area, which is known as interrupt vector table. So, they are

normally a located in the page zero that is the in the first 256 locations all 0 to 00 ff hex.

So, this holds the vectors that redirect the microprocessor to the right place when the

interrupt arrives. So, what happens is that when a particular interrupt occurs say 5.5

occurs. So, then if there is a fixed address to which the processor will jump to, and that

address range comes in this that address comes in this range 00 to ff hex and in that part.

So, you can have your ISR for this for this a 5.5. And we can accordingly execute the

ISR there and it is divided into a block this IVT area there is 00 to ff it is divided into

blocks and each block is controlled each block is used by the interrupts that were to hold

its vector.

(Refer Slide Time: 25:29)

So, I will take an example and say that way. So, it is like this that. So, it is this interrupt

vector table. So, it is like this that say this RST for this interrupt RST 5.5 has occurred.

So, what the processor does is that this value is multiplied by 8. So, 5.5 into 8 so that is

24; so it will come to the memory location 24, and 24 onwards it will expect that the

interrupt service routine for 5.5 to be located.

So, this after 5.5 I have 6 point five. So, 6.5 will start at 27, say that is sorry 6.5 will 5.5

will start at 5.5 into 8, 5.5 into 8 that makes it 44. So, it will start at forty four and 6.5

will start at 48. So, that way that is we have got only a few bytes for doing that.

(Refer Slide Time: 26:57)

So, 5.5 into 8; so this we this makes it 40 plus 4, 44 and say 6.5 into 8. So, this makes it

60, 48 plus four 52. So, if this 5.5 interrupts occur. So, if this is my memory. So, it will

jump to the address 44; so it will jump to the address decimal 44 and if it is if a 6.5

occurs. So, it will jump to the memory location whose address is 52.

So, you see that between these two. So, 44 to 51. So, we have got 6 plus 7 8 locations.

So, we have got 8 locations in between top for holding the interrupt service routine for

5.5. Similarly for 6.5 after that 7.5 will come after 8 locations. So, we have got another 8

locations to hold the interrupt service routine for 7 point for 6.5.

Now, if the interrupt service routine is very small for a particular device, then it may be

contained in that 8 bytes and if it is not which is normally the case normally we do not

have so small interrupts service routine that it can be held in 8 bytes. So, what we do we

put a jump instruction here jump to some memory address, we put a jump instruction

there so that this actual ISR for this 5.5 maybe located from memory location 2000 ok.

So, what we do we put a jump 2000 instruction here, and this requires only 3 bytes. So,

the coding of this instruction requires only 3 bytes. So, that is good enough for me. So, I

put or I use only three bytes here and put the code of jump 200, so that when the

interrupt occurs processor will come to this point. So, it will get this instruction jump

2000. So, it will jump to the memory address 2000 and execute the ISR code there.

So, this way we can handle large ISR codes in these smaller memory locations smaller

sized interrupt vector table jumps.

