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Next,  we  will  look  into  an  example  of  using  registered  pair  as  loop  counter  for

generating some delay.
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So, you see that in this example. So, first this LXI B instruction, it will load the register

pair B C with the value 1000 hex. So, B register will get this one 0 value, and the C

register will get the value 0 0. So, as a result total B C pair is now holding the value 1000

hex.

Now, next instruction is DCX B. So, that will decrement the B C pair by 1, and this is

actually this is decrementing the pair value by 1. So, actually the C value will become

will become FF and this B value will be modified accordingly. So, next we need to check

whether the B C pair has become 0 or not. And as we said that this DCX instruction does

not affect the 0 flag, whereas that decrement the single digits right DCR. So, that was

decrement that was affecting the status flags. So, this DCX instruction does not affect the

flag register.



So,  we have to  take a  roundabout  way. So,  we move the content  of  C register  to  a

register. So, move A comma C, and with the idea that when this B C register content will

become 0, both the B and C register will have 0. So, we do or A B so, or accumulator

with the B register. So, be a register has got the value of C. So, if both the registers B and

C were  0,  then  this  or  accumulator  operation.  So,  this  result  will  be  0,  and  the  or

accumulator the or a instruction this affects the status register or the status flags. So, the

0 flag will get affected. So, we can have a loop like JZN loop. So, there that will go back

to this instruction whose label is loop.

In different assemblers you will find slight variation like,  sometimes these labels are

written directly in this fashion where there is just a space between the opcode and the

instruction. In some cases, you will find that there is a there will be a colon after this

loop. So, that we have got this we have got this loop as a label. So, that is identified in

some assemblers like that.
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So, next we will look into how to calculate the delay that is introduced as I said that this

looping is used mainly for this delay generation, because the adapters thus code segme

segment that we have seen that is not doing any other meaningful job that way. So, for

this purpose we need to know what is the time required for the individual instructions. In

8085 architecture; so this individual clock cycle. So, they are called the T states, or time

steps or individual  clock steps,  you can say. So, as you know that  there is  a crystal



connected to the 8085 that generates a clock signal for it. And then so, how many clock

cycles  are  taken.  So,  that  is  that  will  that  is  documented  in  the  manual  for  every

instruction, what we will do will is that we will essentially add all those clock cycles that

are  needed  in  different  instructions,  and  knowing  the  frequency  of  the  oscillator

connected crystal connected to the chip. So, we can find out what is the actual delay

produced by such a codes code fragment. So, the overall delay that is calculated is given

by number of T states divided by the frequency.

So, if we have got this this MVI instruction for example, if we look into the manual you

will find that this requires 7 such clock cycles or 7 T s states. So, if the microprocessor is

running at  2  megahertz,  then this  instruction  will  require  about  3.5 microseconds to

complete so that you can calculate because that 7 clock cycles. So, that will turn out to be

3.5  microsecond  for  the  micro  process.  So,  using  this  type  of  information  we  can

calculate the time needed for any code segment.

(Refer Slide Time: 04:46)

So, let us go back and to our first example of delay loop that we had, and try to see; what

is the amount of delay that it can generate. So, if this code fragment is put inside a bigger

code, then it will introduce some delay in that code. So, we will and as I said that this is

necessary many a times particularly when you are doing some display part, say for which

the display part it is meant for human being. So, our eyes will not be able to change even



locate that changes. So, I have to keep the display for some time when if it changes very

fast then the eye will not be able to see that change.

So, these delay loops are used for that purpose. So, we can use a loop to produce certain

amount of time delay in a program. So, for example, if we look into this program MVI C

FF hex, then because decrement C and jump or not 0 loop. So, if you consult the manual

you will find that this MVI instruction takes 7 T states then this decrement C. So, this

instruction takes 4 T states, and JZN loop it takes 10 T states.

Now, the first instruction so that is a loop initialization instruction that for a loop counter

initialization. So, that is executed only once, if you look into this code fragment like this,

but MVI instruction is executed only once, the following instructions that is DCR C and

JZN loop. So, that is they will be repeated 255 times, this FF value is the 255. So, it will

be repeated 255. So, if you add this number 2 values of T states 10 and 4. So, total one

iteration of this loop will take 14 T states. So, that is repeated 255 times. So, you can find

out what is the time required. So, 255 into 4, that way it will come.
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Of course, there is another important issue that the last iteration of the loop. So, JZN will

fail, and require only 7 T states rather than 10 T states. So, this is this is a very I should

say minute delay calculation, because this JZN loop instruction. So, it takes 10 T state

when the loop is successful, because in that case the program counter has to be loaded



with the value from the from the memory the what whatever is the instruction this offset

the loop. So, that has to be loaded into the program counter. So, that takes time.

Whereas, if it is not so if the loop fails that is if the 0 flag is set, in that case that lasts part

of the instruction is not executed where the program counter will be loaded with the

value of this loop address. So, that is not executed. So, that requires some less number

less clock cycles and that is B C that requires 7 T s T states rather than 10; so to calculate

correctly. So, we should deduct these 3 T states from the total delay from the loop, and

the total delay of the program fragment is given by T delay is T o plus T l where T o is

the delay outside the loop T l is the delay of the loop and T delay is the total delay.

So, if there are a number of instructions which are not in the loop, which are outside the

loop so, they will contribute to this T o calculation. In our case there is only a single

instruction which is initializing the C register with the value.

(Refer Slide Time: 08:34)

So, in our case this T o is equal to 7 T states delay of the MVI instruction, and T l is 14

into 255 minus 3, because for the last iteration. So, it will the JZN will not require that 3

cycles. So, it will require 7 cycles instead of 10. And that boils down to 3567 T states; so

14 T states for the 2 instructions. So, that is repeated 255 times reduced by 3 T says that

is for the final calculation of T l.
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Now, once this is calculated, so you can you can find out like what is the time needed

like, this is the T total that is required is 7 plus 3567 that is 3574 T state. Now if you

know the frequency of operation of the processor. So, you can calculate, what will be the

total time very corresponding to this value. So, this way we can calculate the time that is

that is the time delays that are introduced by the delay loops. So, to if we want more

delay if we want more delay, then one way out is to use this register pair  as a loop

counter.

So, let us look into the other program that we have taken as an example, where first this

LXI B 1000 hex. So, the B C register pair is loaded with 1000 hex then DCX B move A

comma C ORA B and JZN loop. So, if you if you consult the manual then this LXI B

instruction takes 10 T states, DCX takes of 6 T states, MOV A comma C for T states,

ORA 4 T states and JZN 10 T states.  Of course,  with the exception that for the last

iteration JZN will take 7 T states.
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So, once you know this so, in a similar fashion. So, you can calculate the total number of

clock cycles. So, T out, T o that is the delay what is introduced by the instructions which

are not in the loop that is we do to the LXI in this example. So, that is T 10 T states then

inside the loop so, we have got so, we have loaded with 1000 hex 1000 hex corresponds

to 4096 in decimal. So, this is and this sum of these T states is 6 plus 4 plus 4 plus 10,

that is equal to 24. So, that 24 into 4096 minus 3. So, 3 is reduced because the last

iteration will not take 3 cycle 10 cycles it will take 3 cycles less. So, total is 98301 T

states.

So, 24 T states for the 4 instructions in the loop repeated for 96 times reduced by 3 T

states for the JZN instruction in the last iteration. So, this way this calculation of T L will

be done. And now you can calculate the total delay by adding T o and T l.
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Another way of incorporating delays higher delay is by means of nested loops. So, what

we can do like this is the overall structure of a nested loop.

So, we initialize that loop 2, we initialize loop 2, then the this is the body of loop 2, then

in the body of loop 2 initialize loop 1, and then we have a body of loop 1 then we update

the counter for the inner loop. And if this is the final count, if it is no it goes back the

inner loop is repeated, if it is yes then the counter for the outer outs outer loop is in the

updated. So, the counter is updated, and then we check whether these are the outer loop

has the final count, or not if not, it will go here and do the next iteration of the outer loop.

So, in this way we can have these nested loops, we can implement in assembly level

programs by 2 registers for the 2 counters. So, for outer loop 2 and loop 1 we can put 2

different registers to hold the count values.
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So, this is an example. So, here what we are doing is that MVI B. So, 10 hex B is loaded

with 10 hex that is 16, then C is loaded with FF hex that is 255. And then we do so this C

is this this B register. So, this is used as the outer loop index and C register is used as the

inner loop index; now this decrement C so they were decrementing the value of C. And

then we are checking whether the value has become 0 or not if it is not 0. So, we go back

to loop 1. So, this decrement C and JZN loop 1. So, they continue to be executed and

then once this C register becomes 0 then B is decremented. And then if B is not 0, then

we go back to loop 2 where this C register is again initialized with FF hex. And the inner

loop continues for some time.

So,  this  way we can  have  nested  loops implemented,  and this  can  have  more  delay

compared to say single register, or if the values are properly chosen. So, we can we can

get better delay than the register pair as a delay.
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So, for nested loops the calculation is similar, excepting that we have to the same the

formula is applied recursively for each loop. So, we have to start with the inner loop,

calculate the delay of the inner loop, and then we have to go to the outer loop delay

calculation where this inner loop delay will become a component.

So, if we look into the previous program, then this inner loop that is DCR C then JZN

loop 1 etcetera; so that they will take a number of clocks cycles. So, T o 1 that is the

outer loop 1 is the MVI MVI C FF hex. So, that is this is it is that C register instru

initialization instruction that takes 7 T states then for the loop 1 the looping part. So, that

we will take as we have seen previously 255 into 14 minus 3. So, that is 3567 T states.

Now so, this is the total time needed for the inner loop. So, 7 plus 3567 so, 3574 that is

the total  number of cycles T states that are needed for doing the inner loop, for one

iteration of the outer loop.
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Next this outer loop calculation has to be done. So, in the outer loop we have got this

MVI B 10 hex as the instruction outside the loop body. So, that will take 7 T states, and

this this loop 1. So, what is the total time needed now? So, this is basically 16 times. So,

the value was one 0 that is that is so, it will be repeated 16 times 16 into so, this 14 is the

initialization part of this inner loop. And plus, this 3574 into 14 plus 3574. So, that will

be multiplied by 16.

So, these 14 T states are coming from the DCR B instruction and the JZN instruction. So,

this is basically from this;  so DCR B and this JZN. So, they are actually taking that

extractor that 14 cycles of 10 plus 4 14. So, that is a part of the outer loop. So, they are

included here.  And this  3574 so,  this  is basically  the T states for loop 1.  So,  that is

repeated one 16 times. So, this is gives the 3 14 plus 3574 this is the one iteration of the

outer loop. And that is that is multiplied by 16 so that we can get the delay for the outer

loop minus 3 because for the last iteration that DCR B the JZN instruction will require

less clock cycles. So, that gives a total of 57405 T states.

So, total delay produced by that nested loop pair is 7 plus this 57405; so 57412 T states.

So, total delay introduced. So, if we assume that the clock period is 0.5 micro second.

So, that this frequency is accordingly 1 upon 0.5 micro second. So, it is total delay is

28.706 millisecond. So, this is the precise delay produced by this instruction, this that



particular program how it nested loop. So, this particular program it has got the precise

delay of 28.706 milliseconds.

So, this is the beauty of assembly language programming. So, if the same thing you do

with high level language program. So, we are not sure how much time these instructions

high level  instructions  we will  take.  Because  that  depends on  the  way the  compiler

translates  the  program into  machine  code,  but  if  you are  looking  into  the  assembly

language or you are writing the program in assembly language, then the programmer has

will know the exact instruction that is put into the program and accordingly can calculate

the delay calculate the time needed for a program. So, that way this assembly language

programs  are  very  much  important  when  you  are  looking  for  very  precise  timing

information.

(Refer Slide Time: 18:21)

How to increase the delay further? So, if you are not satisfied with whatever we have

done. So, you can introduce some dummy instructions like NOP, no operation the there is

a there is a special instruction called NOP that is there in almost all the processors as

well as in 8085. So, in the body of the loop you can put a NOP instruction. So, if you put

a NOP instruction. So, that will introduce some delay into the system and that will be.

So, one NOP instruction actually takes 4 clock cycles; so in this program if I put a NOP

here or there. So, if I put a NOP so; that means, the inner loop will that the body of the

inner loop will get extended by 4 more T states.



So, instead of this being 255 into 14. So, it will be 14 plus 4 18. So, this value will

become 18, as a result this value will change. And that will finally, affect the total clock.

So, this value will get modified. So, total value this one will get changed. And that will

effect that delay. So, you can put say a number of NOP instructions. So, if you want

slightly  more extended delay. So,  you can put  a  number  of  NOP instructions  in  the

innermost loop so that that delay value is increased. 
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Next, we will look into another important issue like the sequence of operations that are

done  in  the  microprocessor  when  some  instructions  are  being  executed.  So,  this  is

documented in the in the manual of any processor. So, if you if you remember in the

architecture initial architecture lectures we have seen like for doing operations like ADD

R 1 comma R 2 we have to you have to activate some of the control signals in a proper

sequence.

So, here also the same thing like the now we know the 8085 architecture, now here also

for doing some operation executing the instructions so, we will need to you will need to

control those number of control signals and 8085 the decoder and sequencer that exactly

does this operation. So, we will look into some of the instructions, and how they are

executed over number of T states. So, that will be seen.

So, this timing diagram actually this is a representation of the various control signals

generated during execution of an instruction. So, these are actually the signal lines that



are monitored. The higher order address bus lower order address bus address data bus.

So, this is as you know that is a multiplexed, then the ALE signal read write and I O M

bar. So, these are the signals that will be monitoring for the timing diagram purpose.

And as you remember that this read write. So, they are all complimentary signal read bar

write bar. So, they are active when the value is low, and this particular I O M bar. So,

here also this is there is a bar. So, that signal means if the operation if it is to in your

memory access in that case this I O M bar line will be equal to 0, and if it is doing and

input output from a device, then it will do this I O M bar line equal to 1.

(Refer Slide Time: 21:47)

So, we will explain it as we proceed.

To look into the first example, let us look into the instruction move A comma B. Suppose

I have got so, this move A comma B it is stored at the memory location A 0 0 0 hex. So,

the  first  thing  that  has  to  be  done  is  that  this  instruction  has  to  be  brought  to  the

instruction register from the memory. So, if you look into the code of this so, this move A

comma B the  code is  78  hex.  So,  this  operation  of  bringing this  value  78  into  the

instruction register is known as the opcode fetch cycle or OFC. So, this will be called

OFC or opcode fetch cycle. So, in this cycle the opcode 78 will be brought from the

memory to the processor, the instruction register.
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So, this is the timing diagram. So, you see that the first so, if I just go back slightly. So,

you see in this address it is a 16 bit address out of that this A 0 is the higher order address

byte and 0 0 is the lower order address byte. So, to put A 0 0 0 on the address bus A 0

will be put on to the higher order address bus, and this 0 0 will be put on to the lower

order address bus. So, that is done. So, for this entire operation opcode fetch cycle it

takes 4 T states. So, T 1 T 2 T 3 and T 4 so, T 1 starts at this point it ends at this point

then T 2 starts at this point it aims at this point and these rising and falling edges of the

signals they can be sampled by the memory to know the exact timing duration where the

transitions are occurring.

So, this this higher order address bus it is getting the value stable value, from you can say

after this T 1 has come down it has made a transition from high to low. So, this T of this

higher order address bus has got this value A 0 in it. Then lower order address bus so,

when this is it is. So, at this junction; this that the transition of this clock from high to

low by that time the lower order address bus will contain the correct value. So, this A 0 is

there in the higher order address bus, and 0 0 is there in the lower order address bus, and

the processor also generates the ALE signal.

So, the as you remember that there is a latch connected. So, this lower order address bus

value 0 0 will be used by will be latched on to that external latch via this ALE signal, and

this ALE signal is generated at the T 1 clock state always. So, at T 1 cycle so, this is the



ALE signal will be generated. And this ALE signal will be used to latch the value 0 0

onto the address latch. And then after that ALE becomes low and so, after this perform

this  point  onwards.  So,  that  the  address  bus  content  is  the  lower  order  address  bus

content is not meaningful, because ALE has gone low. So, latch already has got the value

0 0 there.

So, for the memory now A 0 is in the higher order address bus 0 0 is in the lower order

address bus. So, and the processor activates this read bar signal. So, it is read bar. So, far

it was high now it becomes low. So, getting the read bar signal and the address A 0 0 0

the memory will put the corresponding location content onto the data bus. So, 78 hex it

comes onto the data bus.

And so now you can say that this is actually towards the processor the from the memory

to the processor. And you see that the write bar line. So, this is continually high, because

this is not a memory write operation. So, of course, fetch is a memory read operation we

are trying to read something from the memory. So, this write bar line is continually high,

and read bar line will go become low for some time between say from T 2 to T 3 this

read bar line will be low. And this I O M bar line. So, this line is low because this is a

this is a memory operation memory read operation. So, this I O M bar line will be equal

to 0, as a result this is a memory operation.

So, at the so, you can see that by this time by the junction of T 2 and T 3 memory is

expected to put the value 78 hex on to the data bus, and the processor will be able to read

it. And then in this part so, this T 4 you see that nothing very significant happens in T 4,

as far as these signals are  concerned.  So, what  happens is  that  it  is  though it  is  not

documented, but it is expected that the processor is actually doing that decode operation

at this phase to get the meaning of the instruction. So, here it is doing the opcode fetch

cycle, and every instruction has got this opcode fetch in it. So, the processor so, as I said

that if you reset the processor, if you reset the processor, then it will be it will be putting

this program counter value on to the address bus; so it will on the higher order address

bus the PC high will go lower order address bar bus the PC l the lower order 8 bits will

go, and this ALE signal will be generated. Then this read bar signal will be generated.

So, that whatever is there in the content in that particular memory location, it will be

copied and into the instruction register and processor will try to execute that instruction;



again after whatever be the meaning of that instruction as soon as that instruction is over.

So, it will again generate the ALE signal putting the PC high and PC low values onto the

bus. So, this way this opcode fetch operation goes on.


