
Microprocessors and Microcontrollers
Prof. Santanu Chattopadhyay

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture - 10
8085 Microprocessors (Contd.)

So, if we look into the internal architecture of 8085. So, if we have a look at the block

diagram level view of this 8085.

(Refer Slide Time: 00:20)

Now, you see that there are some special  registers, like this accumulator  is a special

register  then this  temporary register. So,  this  is  another  special  register  and this  flag

register. So, this is another special register. So, they are, they are actually in conjunction

with this arithmetic logic unit. So, as we have seen that any processor, it will have an

arithmetic logic unit it will have some register file consisting of a set of registers, and

some controller.

So, in that light so, if we just try to look into the details of this 8085 internals. So, you

will see that this ALU part. So, if you blow it up a bit, then you will find that ALU is

consisting of not only the ALU, but this special register a register temporary register, and

there is a set of flag register. There is a flag register which consists of a set of flip flops,

this a register is 8-bit wide temporary register is also 8 bit wide. And the flag is 5 bit

wide. And this ALU it does operations in 8 bit, 8 in in terms of 8 bits. And there is an



internal data bus which is 8 bit wide; so all the data that are flowing through the internal

internally through the processor.

So, they are A 8 bit at a time. Now let us look at it from the outside like the way the

instruction comes to the processor how does it continue. So, when the instruction comes.

So, the this is the instruction will come through this line this AD 7 to AD 0, when this

part is we assume that it is it is configured as data bus. So, that was outside world the

first instruction has arrived here. Then this instruction will go through this line. So, it

will come to the instruction register.

So, the instruction reaches the instruction register, and then this instruction register the

opcode part  of the instruction so, it  is decoded. So, instruction decoder and machine

cycle encoding. So, this particular module will decode the meaning of the instruction,

and it will also tell what are the operation that it has to do. So, accordingly it will instruct

the timing and control logic, and it will that is this timing and control logic will get the

instruction  opcode from this from this  instruction  decoder. It  will  generate  the clock

signal, which will get the clock signal, and it will have this clock out it will it will it will

have the clock signal from the outside world.

And so, it has got many other lines which are acting as input or output. Like this clock

out signal so, this is basically generally it is the clock out value.  So, whatever clock

signal is coming in. So, that is generated as clock out, then this read bar line; so read bar

line is given as control output. So, write bar line is also given as control output the arrow

is missing here, but the arrow will be outside. So, wherever the arrows are missing I

think this will be the outward direction. Then these, let us look into the signals that are

coming into this timing and control module.

So, clock is one signal clock generator because there are that crystal will be there. So,

crystal will be connected between these 2 pins the clock generator pin. Then this ready

signal so, ready is a special signal. So, we will see it in detail later, but what it essentially

does is that if the memory chip onto with which you are connecting the processor, if that

memory chip is slow compared to the processor. So, processor after it has put the address

on to the address line. So, it will expect that data to be available after sometime. If the

memory is not able to give the data within that time, then it should tell the processor that

I need the address for some more time.



So, in that case it will put this ready signal a high telling that the memory is not yet ready

so, the data is not yet available. So, that way this ready comes as input to this timing and

control module. Then these then write was then the next input line we have is the hold

line. So, hold line will be it is important with respect to a special type of operation which

are known as direct memory axis or DMA. So, in DMA what happens is that there may

be  multiple  processors  connected  to  the  same bus  and  they  are  talking  to  the  same

memory.

So, when that is the case the multiple processors are masters of the same bus. So, there

will be contention like, which processor will be accessing the bus next or so, the policy is

that whenever a processor wants to use the bus. So, it will send a hold signal. So, that the

other processor will be releasing the bus, and it will send a hold acknowledgement telling

that I am not using the bus. So, you can use it now so, this hold and hold acknowledge.

So, these 2 pins are used in that purpose.

So, we will discuss it in more detail when you go into this DMA data transfer type of

operation. Then this reset in bar. So, this is basically the reset pin. So, if the reset pin is

pressed then this reset in bar line will be activated. So, that it will be reset, and it will

generate the reset out. Then it will generate the hold will generate hold out, then this

status line; so s 0 s one and I O M bar. So, that will tell you the status like as I have

already said that which operation it is doing now and whether I O operation or memory

operation. And the ALE signal so, ALE signal. So, this is an output. So, this will be used

to de multiplex the address and data bus values from the multiplexed address data bus.

So, other than that we have got this these general-purpose registers like B register C

register D E H and L so, these registers. So, they are all 8-bit registers; however, in some

instructions so, you can use them as 16-bit register pair as well. So, in that case I have

got register pair B, which consists of the registers B and C making it a total of 16 bit we

have got register pair D, making a D making de as a pair and H, H L as a pair. So, these

are all individually 8-bit register, but when you are taking 2 of them together makes a 16-

bit register, then there is stack pointer.

So, stack pointer we will discuss later. So, this is a special purpose register which is a 16-

bit register, then there is program counter. So, program counter is actually just like in the

architecture  portion  we  have  discussed.  So,  it  will  it  will  tell  like  what  is  the  next



instruction address to be accessed. So, if you reset this processor by putting a reset bar

line high. What happens is that this program counter value becomes reset to 0. So, this

value  is  reset  to  0.  So,  as  a  result  this  next  time  this  the  processor  goes  into  the

instruction fetch cycle, this 0 value will be put through this address buffer to the address

bus.

So, the memory as if the processor is now trying to access from memory location 0. So,

you if your system initialization routine starts from address 0. So, then it the system will

get initialized. So, that way this is the special thing. So, when this reset in bar pin is

activated this program counter value becomes 0. So, that way it goes on. Saying then

then  there  is  a  incrementer  decrementer  address  latch.  So,  this  is  basically  for

incrementing decrementing the address part some additional circuitry will be required

some latches will be required. So, that will constitute another 16 bit.

Other than these so, we have got this serial I O control which will be controlling the SID

and SOD line serial input data and serial output data these 2 lines. There are interrupt

control  so that  will  model  that  will  handle  the interrupt.  So,  if  you want  to  tell  the

processor from the outside that  something extra  has happened something special  has

happened and that has to be taken care of. For example, if this 8885 microprocessor is

used for controlling the operation of a plant, then then if there is a fire detected. So, some

smoke detector detect some smoke, then it can send interrupt to the processor telling that

some abnormal situation has been detected. And this interrupt comes to the processor

when we will see later that whatever the processor was doing that will get suspended for

the time being and it will go into execution of the corresponding interrupt service routine

for servicing that extraordinary situation.

So, these are the internal internals of 8085. So, this is so, this is the document released by

the designers the Intel people, and as a user of the system. So, we get to know that these

are  the  special  registers;  these  are  the  registers  that  are  there.  So,  which  register  is

accessible  in  which  instruction,  and  how  they  can  be  used  etcetera;  that  will  be

documented in the remaining part of this discussion.



(Refer Slide Time: 10:06)

So, if we summarize; so, this microprocessor consists of control unit, ALU, registers,

interrupts and internal database. So, out of that this control unit will control the total

operation  of  the  microprocessor,  ALU  will  perform a  data  processing  function.  So,

whatever the arithmetic logic operations are necessary. So, that will be done by the ALU

registers. They will do they will provide the storage internal to the CPU. And so, actually

this is very interesting because for so, if you want to access a particular data or if you

want to do and do an operation very fast, then if the operands are in memory then while

doing the operation I should bring the operands from the memory to the ALU for doing

the operation.

But if they are in the CPU registers, then that is internal to the chip. So, no external

access is necessary, as a result the operation will be much faster. So, if you are really

looking for faster execution, then you should put the operands of these instructions into

the resistor. Of course, that may not be possible because registers are limited in number.

So, we have got only say B C D E and H L. So, only these 6 registers are available in the

inside the CPU. So, only the most important variables in the program they can be put

into those registers, and the remaining ones will be in the memory, and their operation

will be slow, but this essential the critical one. So, they can be made faster.

So, these registers they provide storage internal to the CPU. Then interrupts are there and

for interrupting the system and telling that something special has appended that to take



care of that  situation.  And there is  internal  data bus.  So,  that  will  be connecting the

modules internal to the processor.

(Refer Slide Time: 12:07)

So, the ALU so, they in addition to arithmetic and logic circuits the ALU includes the

accumulator which is part of every arithmetic and logic operation. I will like to highlight

this point that, it is part of every logic of arithmetic and logic operation.

So, for any operation this ALU the any ALU operation this accumulator is taken as one

of the operand or the first operand, and the result is also stored in the accumulator. So, it

is the source operand, the first operand, and as well as the destination of these instead of

these operations. So, also apart from this a accumulator. So, there is a temporary register

that  holds  data  temporarily  during  execution  of  the  instruction.  And  this  temporary

register is not accessible by the programmer. So, programmer does not have any access

to this temporary register; so if we just go back and in to look into this diagram like this

ALU when it is doing the operation.

So, it needs the value to be available at it is input and these values available at the input.

They should be stable values they should not be floating around this; bus like if I am

trying to add the content of a register with B register, then the B register value should be

available here in a steady fashion. So, what the system will do it will transfer this B

register value to this temporary register, and then it will give that signal to the ALU. As a



result, the values will be added and the result will be available on to the bus which will

be stored in the accumulator.

Or if it is trying to add a with some memory location content, then the memory location

content will come to this data buffer through there through this bus. So, it will come to

the  temporary  register  and  this  timing  and  control  module.  So,  it  will  generate  the

appropriate control signals for doing that the value will be loaded into this temporary

register. And then the value will  be added using this  ALU, and stored back into the

accumulator. So, this temporary register is not accessible by the programmer. Because

programmer is  not supposed to know in fact,  what is the structure of this  temporary

register it is not revealed by the Intel people? So, it is just an it is just said there is

something like that is there inside.

(Refer Slide Time: 14:37)

So, whether it is an 8 bit register or something more than that, so that is also not clearly

told.  So,  as  far  as  the  users  are  concerned  so,  users  will  see  these  registers.  The

accumulator, flags, B C D E H L so, these pairs. So, out of these this B C D E H L. So,

they are called general purpose register. So, the general-purpose register means, they are

normally used for this ALU operation. So, all of them are 8-bit register, and can be used

singly. So, you can use this bc these registers one register as a as an 8 bit register or you

can use it as 16-bit pair like B C D H L 16-bit pair also you can use.



And H and L they can be used as data pointer. So, this is another very interesting thing

like,  say  many  times  what  happens  is  that  we  need  to  implement  a  pointer  in  our

program.  So,  for  pointer  what  is  required  is  that  the  operand  that  we  have  in  the

instruction. That is not the actual operand, but that is an address of the operand. So, we

have to access the memory location 0.82 by that particular  operand to get the actual

value. So, this H L pair, when it is used as this a pointer. So, this can be used to hold

some memory address, and what the processor will do? It will not use H L register pair

value as the operand, but it  will  be using the corresponding memory location  as the

operand.

So, this helps in implementing the pointers in high level languages. Apart from that there,

are  special  purpose  register.  So,  once  one  such  special  purpose  register  is  the

accumulator. So, accumulator is an 8-bit register, and it is normally it is storing their, the

first operand as well as the result of the result of any operation.

(Refer Slide Time: 16:30)

Another  special  register  is  the  flag  register.  Now  while  doing  this  arithmetic  logic

operation, various exceptional situations can occur. For example, when I am storing a

number; so that the number may be the number may be positive or negative.

So, when storing a number in the accumulator, if the accumulator content is negative,

then I there may be some decision that I need to take based on that situation. So, we need

to know what is the value of this operation that has been done, in the last  operation



whatever operation has been done, what is the result of that the type of the result. So, if

the result after doing the operation is say negative,  then this particular be D 7 of the

special register flag, will be set to one telling that the result was negative. And the result

if the result is positive then this D 7 will be 0.

The last operation maybe it has resulted in the value being total is 0. Maybe we have

subtracted to same values and as a result the result has become 0. So, in that case this D 6

bit will be set to 0, set to one telling that the 0 flag the 0 the result has been 0. So, this

particular bit will become 1 telling that the result is 0. Otherwise the z bit will be equal to

0. Then this D 5 is not used similarly this D 3 D 5 D 3 and D 1. These 3 bits are not used

by the processor designers.

So, we have got a carry bit which is the C Y the carry bit. So, when we are doing some

addition or subtraction operation by the ALU. So, it can generate a carry if the carry is

generated then this D 0 bit will be equal to 1 telling that a carry has been generated.

Otherwise this bit will be 0. Then this bit D 2 is the parity bit. So, telling that whether the

result that we have is having an even number of ones or not. If it is not then this p bit will

be 1. If it is yes then this p bit will be 0.

Then we have got another bit D 4 which is the auxiliary carry, telling that it is the it is

there the after doing the addition. So, after 4 bit whether there was a carry generated or

not.

(Refer Slide Time: 18:55)



So, this will be detailed in the next few slides. So, first one is the sign flag as I was

telling that it is used for indicating the sign of the data in the accumulator. It may be

negative it may be positive. So, if it is negative then it is 0 it is 1. And if it is positive the

bit is 0.

(Refer Slide Time: 19:11)

We have got 0 flag if the result obtained after an operation is 0, then the 0 flag will be set

is set following the increment decrement operation of that register. So, if it is some a

register operation is done increment register decrement  register or some addition and

subtraction A 0 flag may be set. So, carry flag will be set if there is a carry or borrow

from the arithmetic operation. So, for subtraction it is a borrow for a addition it is a carry.

So, if something is carry or borrow bit is generated then this carry flag will be set.



(Refer Slide Time: 19:46)

Then there is auxiliary carry. So, auxiliary carry is set if the carry is there is from bit 3

there is a carry out.

So, from bit 3 so, if they all the result is 8-bit result. So, from a bit number 3 to bit

number 4 if there was a carry generated, then these auxiliary carry will be set. So, this is

many, many a time this is necessary particularly when we are doing operation with some

binary coded decimal format, then this auxiliary carry bit is necessary. So, it is kept for

that purpose and this parity flag. So, it is set if parity is even and is cleared if parity is

odd.



(Refer Slide Time: 20:35)

So, parity is even means if the number of ones in it in the accumulator is 1, then it is then

it is set to 1, and if it is it is odd then it is set to 0. Now apart from these general-purpose

registers like we have got special registers like accumulator and flag. The other register

that we have is the program counter. So, this is a very important register, because this is

used to control the sequencing of execution of instruction. Like which instruction will be

executed next by the processor is decided solely by the content of this register.

So, it holds because it holds the address of the next instruction. So since, it is holding the

address and address is 64 kilo 60 the address can be up to 64 kilobyte size. So, it can be

in the 64-kilobyte range. So, it has to be 60 16 bit wide. So, that way I can have this this

program counter register. So, each it will be doing sequencing operation.

So, I hope you understand that if you are trying to jump from one location to another. So,

suppose I am at present executing instruction at memory location thousand. And the next

instruction  I  want  to execute has to  be from location  3000. Then what I  need to do

essentially is that this program counter value somehow it should be loaded with the value

3000. So, that is the thing to be done. So, this is taken care there. So, this is the done this

is the responsibility of the program counter.



(Refer Slide Time: 22:04)

Another very interesting register that is there is the stack pointer. So, this is also a 16-bit

register,  and it  points  to  a  particular  position  in  the  memory. And this  memory  this

register points to is called a special area called stack. So, this is this is an area of memory

to hold the data that will be retrieved soon. And this is called this is goes in the last in

first out fashion. So, we will come back to this stack later for the time being we just

understand  that  this  stack  pointer  is  another  16-bit  register,  that  points  to  a  special

portion of memory called stack.

(Refer Slide Time: 22:46)



So, we will come to this stack pointer later. There are some other non-programmable

registers. One is the instruction register and decoder. So, the instruction which comes

from the outside world by so, the processor puts the address of next instruction on to the

address bus, and the memory responds with the next instruction.  So, next instruction

when it comes to the data bus buffer. So, it is directed towards the instruction register.

So, the instruction is stored in the instruction register, after being faced by the processor.

And the decoder will decode the instruction in the instruction register. So, instruction

registers output will go to a decoder and the decoder will decode that instruction. And

there are internal clock generator. So, internally it is 3.125 megahertz, and externally it is

6.25 megahertz.

(Refer Slide Time: 23:45)

So, the crystal that is connected is of 6.25 megahertz, and internal clock that is generated

is 3.125 megahertz.

Looking at the address and data buses, the address bus has 8 signal lines A 2 A 15 which

are unidirectional, and the other 8 bit so, they are multiplexed back; that is time shared

with eight-bit data bus. So, this lines A 0 to A 7. So, they are actually the lower order

address bus. So, they are act they are multiplexed with the data bus. So, data bus is 8 bit

only so, D 0 to D 7. So, it is multiplexed with that. So, the idea is that when this address

bus value  is  necessary. So,  data  bus value is  not  necessary at  that  point  and if  it  is



necessary  we  have  to  take  care  of  that,  but  assuming  that  they  are  not  used

simultaneously. So, we can multiplex their use.

So,  that  is  the  way that  is  the  basic  idea  of  multiplexing,  when I  have  got  2  items

multiplexed on a line then A 2 items are not used simultaneously. So, I can I can use that

for one at a time. So, in a multiplexed fashion, but we will see that it is not always true

particularly  for  8085;  it  is  not  that  this  address  and  data  buses  are  not  needed.

Simultaneously, because while you are trying to read from memory. So, this you have the

memory needs that the address be stable, when it is putting the data on to the data where

the address bus value should also be stable.

So, it is not a true multiplexing in that sense, but as far as the processor is concerned. So,

it is multiplexing in the sense that the same sets of lines are being used for address bus

and data bus; so during the execution of the instructions. So, these lines carry the address

bits during the early part, and then during the late part of execution carry the data bus

data bits. So, in at the beginning they will carry the address bits towards the end it will

carry the data bits. In order to separate address from data we can use a latch we will see

that is what I was talking about that this is the definition of early part and later part. So,

that is a bit fuzzy.

So, where when this where is the boundary so that is not very clear. So, as a result to be

on the safe side as a designer; so what is required to do is externally we differentiate this

address bus and data bus, this this we do ADE multiplexing of this address bus and data

bus. So, that the operations are done properly.



(Refer Slide Time: 26:21)

So, this brings us to the concept of de multiplexing the address and data bus. So, this

higher order address bits of the address they will remain on the bus.

So, we have no problem with the lines A 8 to A 15. So, there is no problem with those the

lines, because they remain in the bus for 3 clock periods. So, we will see later that when

8085 is trying to access memory. So, it needs 3 clock cycles starting from the point at

which the address is put onto the address bus till the memory will put the data on to the

data bus and the value comes to the processor. So, that takes 3 clock cycles. So, in that

the in the first clock cycle this higher order address bus will have the higher order the

address bits A 0 to a sorry A 8 to A 15.

And the lower order address bus it will have the value A 0 to A 7. And this A 8 to A 15.

So, that will be holding for all the 3 clock cycles, but this A 0 to A 7 they are held for

only one clock period. And naturally you need to latch them externally or save them

externally. So, that they are not lost in the remaining 2 cycles, to make sure that we have

got entire address for the full 3 clock cycles. So, we need to use some external latch to

save the value of this AD 0 to 7 for carrying the address bits.

So, this is done by means of the ALE signal. So, that is so what is done at the at the at the

clock cycle and the at the first clock cycle this address, this on the line AD 0 to AD 7 the

address bits will be put that is the bits A 0 to A 7 will be put. And this ALE signal is

generated by the processor. So,  externally  we can use this  ALE signal to latch these



values A 0 to A 7 into some temporary register. And from there the it can the temporary

register even when the ALE signal is taken off the value remain latched there, and this

temporary register it remain last in that register. And from there we can drive the address

lines for the memory.


