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So, the next, in the time domain filtering, we take the technique called moving averaging

filters. Now, moving averaging filter actually, helps to get rid of the problems we faced with

the synchronous averaging. In case of moving averaging filter, it takes care of the fact that it

can work with the single input of the signal. It does not need multiple realizations and thereby

it is much more suited for real time operation.

Here, we show a simple form that the output, what is y n, that is made out of actually addition

of  the present  signal  and past  few samples  of the signal  and we have used an weighted

average. Below, we are showing that the block diagram that the input is fed to a actually that

chain of registers which is acting as a delay line and there that at each step it is tapped and

multiplied with some rate and the all  the products of this multiplier  or the output of the

multiplier they are added together and that gives us the output y n.

So, here if we look at the transfer function, H z equal to Y z by X z. So, we get that. That is

given here. So, it is also expressed in terms of the b K’s.
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So, now let us try to look at the form that what are the things we need. First of all we need

finite number of terms, that is, if we call them as a impulse response h k that is nothing, but

this b K’s, starting from 0 to N. So, we have taken N terms and to make it unique usually that

b 0 is kept as 1; that b 0 is kept at usually 1, because if we scale it change it then all the things

can be scaled and that it will be just simple scaling of the output. So, usually b 0 is kept as 1

and this filter is a FIR filter or Finite Impulse Response filter because there is no recursion or

feedback here and how that helps because it is an FIR filter there is we need not have to

worry about the stability of that filter. Any filter we choose that is inherently stable.

So, filter design is much more easy and in this case the output depends on the present and

past few values. So, it is a causal actually filter, it does not depend on the future, that way that

we get good response that we need not have to that the filter is causal and it is represented by

that  delay filter  or tapped delay filter  that we have shown in the previous page,  that the

architecture  what we have shown here,  that  this  is  the architecture of tapped delay filter

below filter. So, this is the architecture of the tapped delay filter. So, this tapped delay filter is

used that is gives a easy way to implement it.
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And the transfer function what we got transfer function in these case we got in the form of

summation of b K’s Z to the power minus K; K equal to 0 to N, that is what the transfer

function you got.

It does not have any pole, except for at 0. So, we need not have to worry about the stability of

this  signal  and  if  we  can  choose  the  weights  properly;  that  means,  if  the  weights  are

symmetric or anti symmetric, then in that case that we can have linear phase.
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So, that means, say if we have a 5 weights starting from say 0 to 5 and if we choose the

weights in this way that where 3 is the midpoint, it is we are getting it actually symmetric

over that point, in that case we get the linear phase. So, we can also have anti symmetric; that

means, it could be drawn like this. So, in both the case we will get linear phase. We will go

through some example that  will  help us to realize that  what we mean and the important

actually the importance of this linear phase is that if we look at any signal it  consists of

multiple actually mono component signals. For example, if we take the Fourier series to the

present that signal, then we find that or if you do the Fourier transform we see the signal

consists  of  multiple  sinusoids.  Now,  for  each  of  these  frequency  that  there  is  a  phase

associated with it along with a amplitude that the phase or the initial that the position of that

signal that determines that the shape of the signal very well.

Now, in our body some of the sensors they are very much sensitive to the that this phase and

some of the sensor on the other hand they are not sensitive to it; for example, when we listen

our ear is not particularly sensitive to the phase of the signal, but if we talk about that our

vision, if the signal phase is changed, so what we see that in a image if we artificially create

and just the change the phase, but the spectrum or the spectral energy remains the same. We

will  see completely another picture.  So,  our eyes are actually  very much sensitive to the

phase. So, if it is we are interested in the shape of the signal it is better that we should try to

preserve the shape and one way to do that using the linear phase signal or linear phase filter.
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So, now, here we take an example of the moving average filter. Here, in particularly we have

taken a Hanning filter. Hanning filter is nothing, but a simple triangular filter. The weights are

like a triangle. So, this is a base is a time and we get a triangle and in these particular case

that the filter weights what is chosen we have chosen them as integers. So, we can also call

these filters as an integer filter.
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Now, what is the benefit of these integer filters? Actually one may argue that how we are

calling this as an integer filter, because we have a scaling function here that is one fourth.

So, we are having actually that fractions, but we can represent that function with a help of

that  the  integers  and there  is  a  easy  way to  implement  that  thing  and that  comes  as  an

attraction of the integer filter, that if you see that there is a scaling, that scaling is all the time

it is 2 to the power n in this form. Now, what is the benefit of making it 2 to the power n? As

we had the binary representation of the data, we can have the scaling that by actually shifting

of that beat in the register.

So, if you have to divide it by 4, which can be represented by 2 to the power minus 2, what

we can simply do? We can have 2 right shift, that can give actually that scaling and same way

if we choose more carefully that the multiplication that coefficients what we have done they

are also power of 2. So, for that first 2 cases that we need not have to that first the x n and x n

minus 2 multiplication of with 1, we need not have to do any multiplication the that the

middle one that x n minus 1 that multiplication with 2 we can actually do it with the help of



that  again  shifting  and  shifting  is  a  much  easier  operation  or  faster  operation  in

microprocessor. In fact, when you face the signal at the same time you can do that job and get

it without spending any extra machine cycle.

So, here we get in the next line that we get the impulse response of it that h n is a impulse

response. So, we get that delayed 3 deltas here and below we show the form of it that how the

tabular  filter  with the help of that  we are getting y n,  but if  you implement  it  as a in  a

computer then it is better to do it in that way that using the shifting and if required that if you

have odd values then you may have to use the multiplication. But, the integer multiplication

is much faster and in case of integer filter that is the advantage we take to provide the result

in real time and in a cheaper hardware; that means, we can use a say DSP which is integer

DSP to do this job.
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So, now let us move forward. We see that here is that from the transfer function we have

represented H z in the z domain and corresponding to that we compute that what would be

the that if you are interested the spectrum of it then we can look at the value on the unit circle

which is represented by H omega; that means, we are taking z equal to e to the power j

omega; that means, we are just looking the value of the transfer function on the unit circle

and we get it is the that for T equal to 1, this is the value. So, we get here the 2 parts of it; one

is the amplitude response and we get the phase response. And as the Hanning window the



weights are symmetric  we get  the phase is linear. Phase is  varying from that  0 to minus

omega. So, that is the way it is moving.
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So, now, here we have plotted the output of the Hanning filter, we see that this filter that the

phase where it is linear the drooping characteristics is not very fast. So, if you look at that 20

dB, reduction in the amplitude we have to go up to 400 hertz. Here, the sampling frequency is

500. So, almost 80 percent of that we need to take that, I think that you know sampling is that

1000 hertz and we are getting after going up to 400 we get that minus 20 dB reduction, for 3

dB, we may have to go lower, but then we have to go in between some 200 to 250 hertz, that

is  very  slow kind  of  reduction  we  get.  Only  very  high  frequency  terms  they  would  be

eliminated by this filter.

So, that is the characteristics of this signal. However, what we can do? We can change the

number of taps we can increase the number of taps and that can give us a better kind of

averaging and we can get a better drooping characteristics.
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So, next we look one such filter, that is, taking actually 8 taps and here we have taken a

special care that again it is an integer filter, but it is uniformly weighted filter. So, if you look

at the tap weights it would be just like a rectangle. It is uniform weighted all the points and

that to take care of a scaling there is a term 1 by 8 and 1 by 8 can be represented by 2 to the

power minus 3; that means, these division can be implemented with the help of 3 shifts in the

right side.

So,  for  that  filter  this  or  that  H  z  in  this  case,  we  can  look  at  the  frequency  domain

characteristics by taking z equal to e power minus j omega T and T equal to 1. So, we get the

H omega here and then we can simplify it further that replacing the e with cosine and sine

term and we can get it consists of only the cosine terms; that means, it would be symmetric

and the maximum will occur at 0.
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So, here first look at  the pole 0 diagram. What we get,  the zeros are located like this  at

different frequency; that means, that we have, if there is a component of signal at 125 hertz,

that will come down to actually 0. If there is a component at 250 hertz that will come down to

0, 375 hertz also will come down to 0, so it is coming in that way.
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And, now we look at the spectrum. So, the characteristics of the zeros are coming here and as

you see that it  has to go to 0 at 125 hertz, very quickly we are getting that minus 20 dB



reduction  just  beyond  that  100.  It  is  becoming  minus  20  dB  reduction  and  if  you  are

interested to say 3 dB cut off, then it is coming at 50 hertz kind of thing.

Now, if you look at the phase plot, the phase plot is becoming actually again linear. But it is a

piecewise  linear,  that  means,  it  has  some  discontinuity  and  those  location  of  the

discontinuities are coinciding with actually that the location of the 0. Wherever there is a 0

there would be a discontinuity and again it actually flows in a linear way. So, it is not as good

as they completely linear phase, but it is better than a non-linear phase.
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Next, we look for the moving average filter to integration, the relation between these 2. The

integration here in the right hand side that we are showing that input is x. So, we can integrate

from t 1 to t 2 at some interval and we get the output y t. In a more general form if the signal

is starting from minus infinity we get it the integration from minus infinity to the present

instant may be t 2 and that could be giving us the signal that y t. For a causal signal, however,

when the signal is starting at 0, that integration should be done from the 0.
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So, we can see that there is a relationship between the signal and that moving average filter.

Now, here FT is the integer, here what we are showing by Y n, if we take the integration of

the Fourier transform if we take what we will get, it will be 1 by j omega, X omega plus there

would be a delta function and 0 frequency. So, that’s the form we get. So, immediately what

we can get that the frequency response would be 1 by j omega and the magnitude of it would

be 1 by omega.

So, this one gives us one clear indication that the value would be maximum at 0 and as

omega is increasing it will actually reduce, so, that means, it is a low pass filter and because

of the presence of that 1 by j that we get a constant phase lack of minus pi by 2.
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So, the same thing can be implemented by actually accumulation filter in the discrete domain.

So, the form would be that we can take this form that H z equal to 1 by 1 minus z to the

power minus 1. However; that means, it has a infinite memory kind of thing. So, instead of

implementing it in this way we can implement it in a little different way. So, that we can

implement it that 8-point MA that we can take the last output of the filter plus the latest value

and if you take the as we have taken the 8-point that MA filter  that what is just coming

outside the window that we need to subtract. So, we are taking the 8-point MA filter it is

actually equivalent to that. So, using that filter the only change what we have done here that

this is no longer a FIR filter, because in case of FIR filter we have the only the; that input

signal and past few inputs, but here we are using the output of the signal also to generate the

present output.

So, here we get the corresponding that transfer function and from there we can compute that

what would be the frequency response here using e to the power z equal to the power j

omega. So, that way we can get the response and it comes like a sine function, this one it is

coming in the form of a sine function.
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Derivative-based then we can look at the other kind of signals like we can look at that the low

frequency artifacts; for example, we have seen that the baseline filter that baseline wandering.

So, for the filters what we have seen that is moving average filter, synchronous averaging

they are primarily used or good for removing the high frequency noise.

Now, when we are going for actually that when we are going for low frequency noise that is,

baseline wandering then we need to go for a little different kind of filter and we need to go

for a derivative filter. Again, it is a time domain filter and again it is in the form of a m a

filter, but some of the coefficients need to be negative in this case.

So, here we have taken the simplest form of it that we are taking the difference between the

present and the past input value and the corresponding transfer function is given here is H z.

So, using that we can taking that if we take z equal e to the power j omega T, then with the

help of that we can take this actually form and with that we can actually compute the value H

omega it comes with a sine and the angle that we get pi by 2 minus omega by 2.

So, what we are getting that is actually a decreasing function that sine means at 0 values, the

value would be the omega equal to 0 the value would be 0, then it will slowly raise. So that

means, it will be a high pass filter and we get that it would have also have a linear phase.
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So, here we show the magnitude response here and the corresponding phase response is also

shown here. So, from that we can get, it is a high frequency filter and having a linear phase.

So, we stop here for the session.

Thank you.


