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So, now we will look at ARMA model which is more general one. We will see that how

we can compute the coefficients of the ARMA model. If really it is the case that AR

model cannot do justice to that signal.

(Refer Slide Time: 00:36)

So, for that let us look back at the pole-zero model. The general model equation is given

here consist of a k’s and b l’s and the first value here that the for the b 0, the value is 1

and corresponding to that if we look at the spectral domain, we get the spectrum or rather

the estimate of the spectrum is at y. It can be given as the square of the that transfer

function h omega because our input x n, we have told that x n is either white or it is an

impulse response or impulse ok.

So, as it is constant, it can be represented, the spectrum can be presented only it z h z and

that filter h z or h omega, we can represent in terms of the polynomials a and b; in the z

domain  and  the  corresponding  actually  the  spectrum  is  S  b  and  S  a,  the  ratio  can

determine them is you can determine them ok.



So, we have given here, below that the expression of S a and S b. So, that is the the

starting point in short.
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So, from here, the total spectral matching error, if we are looking at the error that what

we are trying to minimise, we can again give it the error is sum of the that error in the

that time domain as well  as that is same as the error in the spectral  domain and the

spectral domain error e omega or rather e omega mode square, it can be represented in

terms of the spectrum of the signal S y and h omega and h omega can be represented in

terms of S a and S b.

So, using this fact, we can obtain actually that pole-zero model or the coefficient required

for that by minimising the error, the total square error eta ok. So, before actually going

into that let us look at some actually small formulas that which would be useful for to do

that work that if we take the partial derivative of the spectrum of the filter a z, that is S a

omega at  mode z  equal  to  1,  we get  it  in  terms  of  the error  coefficients,  sorry that

autocorrelation coefficient a k and some cosine term.

Here, we actually make use of the fact that when we are talking about z, z is at when

mode z equal to 1 ok, then it is represented by e to the power j omega or rather we take z

z  to  the  power  minus  1.  So,  minus  j  omega  will  come.  So,  e  to  the  j  omega  this

exponential can be represented in terms of cosine omega plus j sin omega ok. From there

the cosine term is coming into play here ok. And for S b also, if we take the partial



derivative, we get the summation of the terms with b l and some cosine terms along with

it ok. We can derive that. We need some time just to do that.
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And then, we take another expression which will help us to write the things in a more

compact way. We defined something called phi y alpha beta. So, it is very similar to phi

y, the only thing what we have done, we have used alpha and beta to take the power here

that we have taken in the denominator for S b the power alpha and for the numerator the

term S a as the power beta ok. 

So, that is that is the special thing what we have done and phi y 0 zero i is nothing but

the inverse Fourier transform of S y or simply we can write that as phi y; that means, it is

a more generalized form when we take alpha and beta both are 0, we get actually the

same old autocorrelation function of y.

Now, why we have taken these, it will be more clear as we proceed. Now the partial

derivative of the error term with a i that is delta eta with respect to a i, it will give us that

the that terms S y and S b, they are not actually having any term with a i. So, the partial

derivative will be applied only with S a and we have taken it in that way and here we

make use of that the previous result we replace it with the summation of the that a k

coefficient, the previous result and using that that we can write it in a more compact

form. 



We make use of that we get the results are coming in terms of some variable phi y 1

comma 0 ok. So, phi y 1 comma 0 means we have here S b is there that we got one term

of S b but S a is not there in the numerator ok. So, we are getting the equations in that

way.
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Next in the same manner, we can take the derivative of eta with respect to b i and we get

the equations in terms of phi y 2 comma 1 ok. So, we can give a compact representation

we get two sets of equations. Now if we look more carefully, we observe something the

terms that phi y 1 comma 0, they are not function of a k. So, we get a set of linear

equations by equating that partial derivative to 0. So, by that way, we can compute the

coefficient a k by those p equations because p equations and p unknowns are there.

Now, if we look at the next set of equations, we get unfortunately phi y 2 comma 1. It is

a function of again b i. So, it is not a set of linear equation, by equating that delta eta

partial derivative of that with respect to b i, equating that to 0 the equations what we get

they are not linear equations in terms of b i but it becomes set of non-linear equation.

So, what we need to do to solve the AR model or to estimate the AR model parameters,

we require to solve p linear equation and q non-linear equation. So, let us see first how

that can be performed.
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First  we take  an iterative  technique  because  we are  to  deal  with a  set  of  non-linear

equation.  So,  we  have  taken  the  Newton-Raphson  technique  and  using  that  we  can

compute the values of a vector a and vector b and combining these two together rather

concatenating  them,  we get  a  new vector  c  that  is  the  vector  of  actually  the  model

coefficients and we need to find that using this iterative process.

So, we have some update rule at every iteration; We update the value of c, the vector c

with respect to that the previous update value c m, we get c m 1 and we make use of the

Jacobean of eta rather we are using of the hessian matrix here j is the hessian matrix; that

means, we are taking that double derivative of the error eta with respect to c and we

compute that at a point c equal to c a ok.
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So,  once  we compute  that,  we can  update  that  value  and this  way we can  actually

compute and for that part. We can actually partition also the 2 parts to make it simple that

we can write it in this way that c is concatenation of a and b or rather a transposed and b

transposed, we can write the update equation in this form where we have to compute the

inverse also here.
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So, here we can using that we can get a number of equations using the first and the

second  order  derivatives  and  that  we  can  solve  though  these  equations  using  these



equations we can compute the value of a k’s and b l’s; however, the as we are using some

set of non-linear equation, the results are very much dependent on the initial condition. If

we have good initial conditions, we will get the optimal result otherwise we may get

actually something much inferior than that.

(Refer Slide Time: 15:16)

So, we look for some alternative and for that, we take one technique proposed by one

scientist name Shank. So, it is known as Shank’s method ok. So, let us look at that that

what is the Shank’s proposal. 

Let us go back to that ARMA model. In the ARMA model that we have taken h z in

terms of the ratio of the two polynomial of b z and a z or in the time domain we can

taken that as a linear prediction equation using that few previous values of the output and

present and the few previous inputs.



(Refer Slide Time: 16:32)

So, here what we do, that we compare y z or rather what we are doing we are decoupling

that two parts that in the ARMA process one part is the m a part and one part is the AR

part. So, we are decoupling the thing in a way we are for that purpose we are choosing a

variable v which is helping to an intermediate variable which is helping to separate the

object that this general equation into two parts; one part is the only m a part, another part

is only the AR part.

So, if we separate these two parts, we can tell that v n is the signal what we get by the

AR model and using that v n in that ma equation, we can get the output y n ok. So, we

are actually dividing the two parts using this new variable v n ok, that is the trick actually

is done we could decouple the two things.
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Next, saying that Shank has assumed that let us take that these signal is nothing but the

impulse response of that ARMA model that y n it is nothing but the impulse response of

the ARMA model what we are trying to estimate. So, in that case if the input is delta,

then output y has to be h n the impulse response of the filter. 

So, the equation of the ARMA model we can write it in this way that h n in place of y n,

we can write it that for first few values for n equal to say 0 to q this equation will hold

and when n becomes more than q these part none of them will be present all of them the

value would be 0. So, we can drop this part and it becomes a simple equation like this.

Now, what is the benefit we get out of this process or this assumption is that that in this

way, we put actually separate the two sets of coefficients. Here, we see in this case that

we do not have any b these set of equation that is having only the a k. So, that is the

major gain we have done.
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So, now if you multiply both the side by h n minus 1 in the second equation, we get

actually it in terms of phi h is an equation using phi h and the a r coefficient a k’s thus,

what we get that using these equations, we have actually the n is much larger than capital

N is  much  larger  than  p  n  q.  So,  in  that  case,  we have  a  number  of  actually  such

equations and these equations they are independent of actually the blocks.

So, we can first compute the a k’s using the value phi h and that is what is actually done

first. So, because there would be some error approximation error, so, it has been written

in  this  way that  we would  have  some error  e  en  that  is  the  prediction  error  of  the

impulses here and we need to minimise these again eta that is gives the sum of error

square from q plus 1 onward ok.

So,  we are taking the  sum of  error  square because  so many equations  and they  are

equation should be here in this case precisely we have actually p unknowns and we have

that n minus q equations which is much actually larger than p. So, more unknowns are

there it is over determined system. So, there we need to take care of the error in that error

this over determined system and the error is defined in this way we try to minimise that

to find out the best possible solution.
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Now, using that equation first the error part that AR coefficients are computed and then,

we get the estimated values of a k which is represented by a k tilde and we compute the

corresponding the polynomial a z or the estimate of that is a z tilde. Now, as we have the

a z tilde, we can look for the total square error for the m a part now. 

We can concentrate in that and if we try to find that again we can represent that as the

error in the m a part where we would need the value of v tilde n minus l and if we know

that because the h n is known we can compute the b l’s again in the same way.

Now, v tilde n is nothing but the impulse of the AR filter and AR filter already we have

an estimate. So, using that we can compute actually the value of v tilde n using the that

the polynomial a tilde z, we can compute that.
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And by minimising this we can the eta, we can get this is the set of linear equations that

with the help of that again, we can compute the value of b l

So, Shanks’ method again, we t we are getting a set of linear equations; however, in this

case it is it is just we have the q unknowns and actually q that equations ok. So, we can

actually solve them and we can find out the m a parameters. So, in that way we can get

both the values of the AR parameters and the m a parameters using linear equations.

Thank you.


