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So, now let us look at that parametric model from the spectral domain or the frequency

domain.
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So, what we get here that from the equation of the AR model and that the error term that

with the help of which we are actually extracting the parameters. The first one is the

synthesis model that if we drive it by a white noise and we know the AR parameters how

we can get a signal like yn.

The next one is a analysis model, that where we are trying to extract the model parameter

because we do not know that driving sequence and the coefficient that is aks. So, given

the signal y we are trying to do the linear prediction, given the fact that for the timing we

have assumed that we know that model order and one way to make that that we have

taken a sufficiently large model order. So, we can compute the that prediction y tilde n

and we can compute the that prediction error.

So, if we take the Z-transform in both the case of the equations we get one is for Y z in



terms of H z and X z, another is for the error term E we get E z terms of A z and Y z we

get they have some relationship, because A z can be represented as that G by A z ok. So,

these two filters that H z and A z they are inversely proportional to each other and they

have a relationship in that way.
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Now, if we take Y n we have actually captured that signal that output, if we treat that as a

deterministic signal because we have just one set in hand even if it is a stochastic signal

or a stochastic process we do not have multiple that the shapes of Y n. So, we can treat

that as a deterministic signal and using the Parseval’s theorem, what we can get the total

square error it should same in the time domain as well as the frequency domain.

So, we can write eta that energy of the error in the time domain that is same as the energy

of the signal in the frequency domain and from there E z or e omega to be more precise

in this case, where z is taken a point on the unit circle. So, we can represent that in terms

of A and Y. 

So, it can be represented E z square or the spectrum of the error in terms of the square of

the  that  polynomial  or  filter  A omega,  and the  autocorrelation  of  the  output  S  y  or

spectrum of the output to be more precise. So, it is a convolution of that on the other

hand what we get we can do some mathematical manipulation as E z equal to A z into Y

z.



Now, we can replace the value of Y z we know that the value H z into X z and H z can be

represented as G by A z. So, we get from the right hand side and A z will cancel because

it appearing both in numerator and denominator. So, we are left with G into X z.

So, the prediction error is a scaled version of the that input signal.
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Now, in this previous analysis what we have seen that X n is either that X n is the driving

force it is either is a impulse function or direct delta function or a white noise. And for

that X omega is constant. Hence, as the E omega is also a scaled version of X omega it

will  also  have  the  same  characteristics;  that  mean,  it  should  be  constant  over  any

frequency.

So, in other word what we can tell the error is also white and for that reason that the filter

A  z,  that  what  we  are  determining  here  using  the  autocorrelation  method  or  auto

covariance method, we call it as a whitening filter, because the output or the prediction

error what we get that gives us a wide spectrum or white noise ok, that is why it is called

that whitening filter.

Here some more observation as the model order increases the total squared error that is

eta p it actually decreases eta p tends to 0.
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So, what we can conclude from there a multiple things we can get the first thing for a

model order p, if you look at this model we are making use of p plus 1 autocorrelation

values to compute the model. So, the model impulse response has actually same ACF as

that of first p plus 1 ACF of the signal and as the p increases, which means the model

ACF becomes more and more equal to the signal ACF.

First we are matching with p plus one ACF starting from 0 and as the order is increasing

the ACF of the filter impulse response and that of signal that is actually we are finding a

match we are making use of them. So, in that way increasing the model order we are

getting the same value for the filter ACF as well as for our that model ACF this.

Now, ACF and PSD they are just Fourier transform pairs. So, they are if we can catch

one we get other also. So, as the p increase increases and it tends to infinity what we can

tell the model ACF it becomes identical to that of the signal ACF and model PSD would

be identical with the signal PSD.

The simple reason is we are making use of more and more lags ACF with the increase in

the model order. So, we get a identical matching between them. So, in other word we can

what we can infer that given any spectra, we can actually approximated by an all-pole

model of an appropriate model order; that means, if we do not restrict that model order.

Any model order is fine then given any spectra we can actually model by all-pole model;



previously we have told in case of biomedical signal AR model is good, but there may be

case that where the ma model would have been more appropriate we may not encounter

such situation that is why we do not know or ARMA model should be a better model in

terms of a compact representation.

But we started with an AR model because of our lack of knowledge. So, what would be

the situation in that case that is an important question, because what we have told that

parametric  model  is  very  powerful.  So,  long  the  assumptions  are  correct  if  the

assumptions are wrong it can actually lead us to very dangerous situation. So, we bound

to check that what is the penalty we can have to pay by taking only the AR model in case

of a more general model like ARMA model.

So, what we see that if we are ready to increase that model order and give a flexibility in

that given any signal or to be more precise any signal spectra, we can represented it by

the AR model of a sufficiently large model order ok. So, that is the importance of this

derivation.
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So, now we come to another important question that how do we select the model order?

Given the AR model performs better and better where we stop, we can put it also in that

way because we know as we keep on increasing the model order say using the Levinson

Durbin algorithm or any other technique we see the error becomes less and in that case

where we can tell that the right time to stop to avoid over fitting.



The first thing to note here lower the model order leads to a smoother PSD we get a

smooth PSD, but if it is not again appropriate them by over smoothing we may loose

some actually prominent peaks. Now if we keep on increasing the model order what will

happen? We would get number of actually spurious peaks, which will be more specific to

that actually that n symbol; that means we have taken a set or a vector Y n or a set of

values of Y n. If we take another set of observations of the same stochastic process, we

will find the spectrum will change those peaks will change their location and that is why

we call them as spurious peaks ok.

So, increasing the model order what it is doing it is trying to do over fitting in that signal

though it is reducing the error and matching more and more to that given signal, it is not

actually  giving  as  more  new  information  about  the  underlying  process  rather  it  is

suffering from over fitting.

So, we need to find out an way the first observation what we get that as we increase that

model order there will always be it decrease in error or error will remain same. So, we

can say error is actually a non-decreasing function or rather non-increasing function of

the model order either it will decrease or it will remain constant.
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So, based on that fact all the model of selection techniques have been proposed the first

one is very simple based on that fact, that it will remain same or it will reduce with a

increase of the model order the prediction error.



So, the plan one is let us take the ratio of the error for order p plus 1, divided by the

previous actually error for model order p and this ratio is expected to be less than 1 or

very close to 1. So, we take the difference from 1 now when this value this ratio comes to

very close to one determined by a threshold small threshold delta, when it is coming

closer than that then we should stop. So, that is the first simple technique.

The next one is using again the final prediction error the plan 2 it is suggests that we

should take again the prediction error and we take a multiplayer along with that. So, if

we look at this term N plus P by N minus P we get the numerator is monotonically

increasing or linearly increasing the denominator is again linearly decreasing. 

And initially as the N is very large that change will not be prominent, but as the P is

growing it will become more and more prominent and 2 together it will give a non-linear

increase on the other hand the prediction error that is rho hat P for the model order p

what we get  if  we draw the curve that  with respect  to p, that the prediction error is

actually decreasing in this way this is the prediction order rho hat P and the first term it is

increasing in this way.

So, the minimum will come at certain point in other words actually what we are doing

here we know the final prediction error it will decrease very slowly and to come to a

constant value it may take very large model order. It can keep on actually reducing in

very small  way and in that case to find out that threshold delta is a difficult  choice,

because that depends on the signal and that depends on the process in hand.

So, what we should do we need to add some penalty for the increase of the model order.

So, for that we have taken the correction term here, which is increasing with that model

order. So, that as the p is increasing that penalty is also increasing and we stop at some

point when the 2 curves are cross each other or restrict from a from the over fitting.

So, both these techniques are actually empirical techniques and they are have actually

less theoretical background.
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So, there has been a proposition based on the information theory proposed by Akaike.

So, it is known as Akaike information criteria which has given a technique to select the

Akaike information way that it depends on again the prediction error power we take the

log  of  that  and multiply  with  N.  So,  these  term that  will  go  that  will  in  k  actually

decrease with the model order and the second term will linearly increase. In fact, for the

theoretical derivation Akaike has found that this term should be p.

But when people try to use that they found that if we use a scaled version of it that is if

you use 2 p we get more accurate values. So, that is what is used in practice. So, in this

case what will get that again the curves would be like this with the increase in the model

order that, the first term will  decrease that is N log of rho P the other one is 2 p is

increasing linearly.

So, we will get the point where the minimum will get where the 2 intersect with each

other. So, that will give us the optimal model order ok. So, that is about the model order

selection.  So,  we can  use any of  this  technique  and out  of  them the  last  one  is  the

theoretically more sound and more accurate one though it is a bit more complex.
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So, here first we see some example that what is the difference we get when we take the

FFT and directly FFT that is periodogram technique or if we go for the that AR model to

compute the spectra. 

At the top here we are showing the signal at  hand that is an eg of channel  O 1 the

corresponding that FFT spectra or periodogram spectrum is given here and we know that

the periodogram; it gives us a more clean view than the autocorrelation function to check

that where the signal energy is more concentrated, that ACF also has same amount of

information, but the representation is not. So, clear or direct.
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Now, let us look at if we compute the same using the AR coefficient what we get? Using

the model order 6 here we have taken AR model we get a very clean peak very near to 10

hertz; that means, alpha components are there you get it very clearly. And it is much

more prominent than what we could get in the periodogram ok. We can check that in the

previous  that FFT base spectrum if  you compute  here also we are getting that  more

accumulation at this place, but the peak is not clear there are multiple peaks that makes a

difficult to find out that where is the location of the peak and to decide on it whereas, AR

model makes it very clear.

Now, if we increase that model order instead of taking the model order S 6, if you go for

model  order  10  what  we  get  this  peak  that  is  near  10,  that  remains  there  it  is  not

disturbed, but it is a big accentuated it is becoming little more sharp. At the same time in

the valley region that is this part earlier there was a very subdued one single peak here.

Now, instead of that we are getting 2 peaks in the valley region we are getting actually

rather than peaks we can say more undulations we are getting. So, that is the difference it

creates if we use the increase model order. So, the change is not much. So, penalty is not

much that big in terms of the spectra, but suddenly it will increase the computation. So,

we always prefer to use the that optimal model order which will give us the smooth

spectra and we can reduce unnecessary computation which does not add any value for

the signal analysis ok.



So, this is about we get that idea that how the model order selection affects and we get

the past and also the idea that how the spectrum, computed by the parametric model is

superior than the PSD technique, given that we have taken as a appropriate model order.

If by mistake we have just stopped at 2 then the situation could have been different it

would not it may not resemble actually the signal spectra.
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So, now we will look at one more thing that we have seen for the speech signal the

cepstral coefficients are very good as features. So, here we see the relationship between

the  AR model  and  the  spectral  coefficient  because  with  a  ACF we could  get  some

relation  with  the  spectral  coefficient,  we expect  the  AR model  also  may have  some

relationship  or the expectation can be increased like the autocorrelation  helped us to

autocorrelation of the signal helped us to get the cepstral coefficient same way can the

AR coefficient help us to compute the cepstral coefficient, because it is helping us to

compute the spectrum of the signal ok.

So, from that what we do first we take the that all pole model H z, where the poles are

located in the units circle and using the Laurent series we can actually represented as a

power series,  and if  we take log in  both the side which is  one of  the things that  is

required for the cepstral coefficient or to go to the cepstral domain we need to take the

log.

So, if we take that we get in the right hand side sum h hat n ok. As the coefficients of the



different  order  of  z  to  the  power  minus n,  now using  the definition  of  the complex

cepstrum as the inverse z transform of the log of z transform the single. So, what we

need to do we need to take actually inverse z transform of the log of H z. So, we get the

series the h hat n as the cepstral coefficient of the signal h n ok.

So, we could get actually cepstral coefficient in this way.
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And let us see that if we take the AR model represented by the model coefficients aks for

k equal to 1 to p what is the relationship between them? 

So, for that we replace hz in the left hand side that log of hz we have taken we replace hz

by 1 by a z and after that we can differentiate both the side by z to the power minus 1.
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Because the polynomials are we are getting the power of z to the power minus one please

keep in mind it is not with respect to z, but z to the power minus 1, because that helps us

to do the computation. So, left hand side what we get the log of x is 1 by x and then we

get x to the power minus 1. So, we will get x to the power minus 2. So, by cancelling that

power we get it that using the chain rule we get the derivative in this form we get here

below a z and we get that after taking the partial derivative this is the term we get.

In the right hand side we get n times h hat n as a coefficients of z to the power minus n

plus 1 or we can write it in this way z to the power minus within bracket n minus 1 ok.

And to make it actually simple to simplify it we can multiply both the side with the

denominator of the left hand side. So, we get both the side polynomials and in the left

hand side we get the power of z starting from z to the power 0 to z to the power 1 minus

p, that is the power of z in the left hand side right hand side. 

However, it could be infinite, but because both the sides it need to match with each other.

So, the coefficients have to match coefficients of z or z to the power minus one need to

match in both the sides.
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So, using that property what we can write that h hat 1 equal to minus a 1 and h hat n for n

equal to 1 2 greater than 1 to p; that means, starting from 2 to p we get it is minus an

minus some more term. So, as we compute h 1 using that we can compute that h 1 hat

with that value we can compute h hat 2 and using h hat 1 and h hat 2 we can compute h

hat 3.

So, in that way we can go up to the pth coefficients. So, that the p spectral coefficients

we can compute in that way ok. And according to the AR model the model order is p

here in this case. So, those many cepstral  coefficients are only important and we can

compute them using the AR coefficients.

So, if we have AR coefficients we need not have to do the z transform Fourier transform

taking the so, many things taking log taking care of the that that phase unwrapping. We

can directly use the AR coefficients and get the cepstral coefficients from them. So, that

is another important result we could get by learning the AR coefficient.

Thank you. 


