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In the previous module when we are talking about AR model and showing that how we

can find out the coefficients,  strictly speaking it is not actually AR model it is just a

linear prediction model. The reason is we were looking at only a deterministic signal, we

have  not  considered  it  as  a  random  signal,  we  have  just  taken  that  signal  is  a

deterministic one and trying to find out a linear prediction model which fits there.

Now, let us take the case that if the signal is a random signal how we proceed about it

and, to be precise that AR model is defined only for the assumption that signal is random

because, the driving signal is a white noise which is itself a random process ok.

(Refer Slide Time: 01:23)

So, this difference please keep in mind and, here if we take the y n is a random actually

signal. So, error en which is the prediction error of y n is also random; So, in this case

the equation 1, that equation 1.
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What we had for the total square error, or a scale version of a mean square error it would

take a new form ok, what we have done instead of the summation, we have used the

expectation operator this is the change. Now, the natural question could be could be that

why we are doing all such tricks, the point is that for the beauty of the this parametric

model is there that when we know that this is the model, we try to find out the model

parameters out of the signal, we call for a random process that these values are just in

symbol.

So, once we have the outputs y n out of that we find out the model parameters. And once

we  get  the  model  parameters,  we  can  characterise  that  process  in  terms  of  model

parameters,  we do not  have  much  need of  those  exact  values  of  y  n  which  are  so,

important in nonparametric methods. 

Once we get those model parameters, or the model itself we can say that we can forget

about the signal we know signal is nothing, but it is an output at a at a point of time it

came out of this model, at a different point of time another set of value may come out of

that model and as you know the model we can do all the work with the help of that

modern. So, the signal becomes of less importance after the model is derived and, once

we have that all the parameters in our hand ok. So, that is the beauty of the parametric

model it gives is a compact representation of the whole thing.

Now, here let us come back that we have the new definition of the mean square error



using that again, we go in our known way of finding out the minimum error. So, using

that minimum error criteria; that means, taking the partial derivative with respect to a ks

and  equating  that  partial  derivative  to  0,  we  get  a  set  of  normal  equations  that  is

consisting of a ks and expectation of the that second order terms of y primarily of the

form y n minus k y sn minus i in this form.

(Refer Slide Time: 05:13)

So, if we solve that we can get the value of a ks and, again with this expected values we

can actually get the mean square error value also with the help of the expected values of

y n minus i into y n minus k and a ks. Now if the signal is a stationary random process,

the term that y n minus k y n minus I, or rather the expectation of this product, we can

represented as the autocorrelation of lag i minus k and, we get actually the same form as

previous that equation number 3.
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That the equation number 3 which give us those equations; So, we are getting the same

set of normal equations with phi and, here we get a particular characteristics that these

matrix  is  something  very  interesting.  If  you  look  at  that  all  the  diagonal  terms  the

principal diagonal it is with 5 0 and you will get that, that half diagonal terms also they

are having the same values here, it is phi 1 it is phi actually minus 1 mean again phi one

for real signal ok.

So, it has not only the symmetry all the diagonal terms, they are actually having the same

value.
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So, for the real signal this p by p matrix,  it is symmetric and the elements along the

diagonals are identical. And such matrix is given a special name as Toeplitz matrix ok.

So, this Toeplitz matrix this is something very special structure and, this equation what

we got it look very similar to the earlier wiener filter that, Weiner filter also implemented

using a tabular filter here also we have the same structure and same equation; however,

there are certain small differences appear.

In this case that ACF what we is used in the left hand side was the ACF of the input in

case of the Weiner filter whereas, in this case it is a ACF of the output of the prediction

filter. So, this is the first difference that in the left hand side, the coefficients or the terms

what we get though both the case it is ACF, in case of Weiner filter it was ACF of the

input and in this case the ACF of the prediction filter that is; that means, the that of the

output signal.
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The filter vector on the left hand side contents all the filter parameters in both the case.

So, what we try to derive, the filter parameters if both the case they are in the left hand

side.

Next we look at the right hand side and for the right hand side what we get that we have

the cross correlation between the input and the desired response in case of Weiner filter,

whereas for the air model we have again the ACF of the output of the prediction filter;

that  means,  that  of  y  ok.  So,  that  is  the  primary  difference  though,  we look similar

because in the left hand side, we have autocorrelation and we have all the parameters

they are not exactly the same.
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Now, to take actually the advantage of the special structure of this matrix which is a

Toeplitz  matrix,  we can make use of the Levinson Durbin,  Durbin algorithm it is an

iterative technique which has different benefits the first benefits is it helps to reduce the

complexity. The complexity of the computation or the solution of the that the set of linear

equations, we know that to compute directly what we can do, we can take the inverse of

that matrix and, taken in the right hand side we can multiply both the sides by the inverse

of that autocorrelation matrix. 

So, left hand side will have those filter parameters right hand side will have the inverse

of the autocorrelation matrix multiplied by the vector of autocorrelation and, then we can

get those filter parameters after the multiplication in the right hand side.

Now, the amount  of computation what we have to do,  we can reduce that  using the

special  structure of  the Levinson Durbin algorithm.  So,  first  let  us see that  how the

process is defined for that here the steps are given the first step is that, we have to do the

initialisation and initialisation first the index is 0 and for that the error e 0 it is nothing,

but the signal autocorrelation at the 0th lag. 

In  other  word  when  the  prediction  order  is  0  then  prediction  would  be  0.  So,  the

prediction error is nothing, but same as the that whole single.  So, the energy of that

would be same as the signal energy and, now we have to go through number of iteration

have to be more precise for p iterations ok.



So, let us go through those steps, the first point is we need to increment the model order

and compute the i-th reflection coefficient. Now if you look at the form of the reflection

coefficient you would get that, you have seen this form this form is nothing, but the error

of a actually i-th order model that, the i-th order model what would be the prediction

error, we are actually using that. And then it is scaled by the previous the error at the

previous model order that is eta i minus 1 ok.

So, it is a ratio of the two errors we can say. So, this is the reflection coefficient and after

we compute the reflection coefficient that, we have to go for that that the next step for

that actually we need to make use of that computation of that a i minus 1 comma j, which

suggest that j-th model coefficient at the iteration i minus 1; that means, to the previous

level what was the that the coefficients of the a i prediction coefficients, we make use of

that and find out that what is the error and, then we get the the model that reflection

coefficient.

Now, we will update actually all the that prediction coefficient, the new 1 a i i that up to

that the previous 1, it was i value was i minus 1. So, that i a i comma i is new, which is

appearing first time that is taken as same as the reflection coefficient.
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And  the  other  coefficients  which  were  there  earlier  they  are  updated,  those  values

represented as a i comma j for j is in between 1 to i minus 1, we take what was the

previous  value in  the last  iteration  into that  reflection  coefficient  into that,  we get  a



reverse actually a flip kind of thing of the coefficients in the previous iteration a flip

version of it.

So, this is the way the updation happens and, we can compute the error vector eta i it is

nothing, but the previous error into 1 minus square of the reflection coefficient. So, these

steps actually are followed p times and at the end of it we get the final model parameters

a ks, they are given as that at the end of the p iteration coefficient value ok. So, what we

are looking at how to find out the filter parameters that we get by the that p iterations

here. Now as the model order increase this total squared error TSE will decrease.
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Now, let us look at couple of interesting thing that from the book, we have taken these

points book of professor Rangayyan, it is written that reflection coefficient may be used

to test  the stability  of the signal.  And the next point is for stability all  the reflection

coefficient has to be less than unity in magnitude, I have not change those statements

because, they are in the book and if you are following that book you may be a bit ruffled

if I change them.

But the fact is if you go through the SNKS book, you will get that reflection coefficients

have a nice property that they would always be less than unity in magnitude ok, that you

can actually convince yourself, you can take an example and compute them, or you can

just  look  at  that  equations,  let  us  go  back  to  that  how  reflection  coefficients  are

computed.



Here if you look at this equation of reflection coefficient, it is nothing but actually the

error, in the previous that the present error divided by the previous error. So, as it is we

know we increase the model order, this error decreases this value cannot be more than 1,

it is by design it would be less than 1. In fact, that is one of the beauty of the Levinson

Durbin algorithm, the filter coefficient it will generate in this way it will make sure that

the filter would be stable because, they would be reflected inside the unit circle.

Earlier we are we have gone through the concept of minimum phase signal, where all the

poles  and  0s,  they  are  reflected  inside  here  Levinson  Durbin  algorithm  using  that

reflection coefficient, they are achieving that property they are reflecting all the poles

here because here we are not dealing with 0,  inside the unit  circle  and all  those AR

parameters, they are corresponding to the minimum phase signal, or to put in a more

simpler way that we always get a stable signal.

So, these two lines they are not precisely correct they are they should be interpreted in a

different  way  that  Levinson  Durbin  algorithm,  that  gives  stable  filter  and  reflection

coefficients make sure that their  values are magnitude would be less than unity and,

thereby they are actually reflected inside. So, all the coefficients what we get, we could

make use of it without any problem of stability ok.

So, now let us we can look at how to get the gain factor G; Now the comparing the AR

model with the AR equation we to compare that. So, we take the t equation side by side

both can be written y n is there, in the left hand side for the AR model right hand side we

are getting the previous the values of the output and G times the present input x n.

For the error equation what we are getting in the right hand side, the error term minus

actually again the summation of the previous terms multiplied by the corresponding AR

coefficient ok. So, now if we compare these two, what we get that the error term is

nothing, but G times the present input signal.
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So, what we can do that we can get that input signal is proportional to the error signal or

we can say other way round the error signal is proportional to the input, irrespective of

the nature of input.

So, when we look at the output energy and that is for a fixed H z; that means, H z is

computed, we need to have a energy balance in both the size in the input and the output

because of the preservation of the energy. So, looking at that what we can get the G

square is equal to that the prediction error for phi y equal to 0; that means, what we are

suggesting that the input, if it is of say you need energy, then the solar energy of the

driving is because of the scaling factor G. 

So, that is same as the output error and we already know the expression of the output

error. So, we can get G unique up to scaling the scaling factor is the scaling of the input

signal. So, the simplest thing we can do we can assume, the driving signal energy is 1

and for that what is the value of the G we can get from the energy of the that error of

prediction.
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So, with that we complete one part. Next we look at a different technique of computing

the actually the AR coefficients. This new technique it is called covariance method, the

previous  technique  as  we  are  using  the  autocorrelation,  we  can  call  them  as  the

autocorrelation method for computing the AR coefficients.

So, in this covariance method again, we use the same equation 1 and 2 the only change

occurs in the range of minimisation. The previous technique we have taken the range is

minus infinity to plus infinity and; however, that what limited because of the limited

number of sample, but here we start with the fact that, we have signals from 0 from index

0 to capital N minus 1 ok.

And over these that if we minimise that error, we get a little different form, in this case

we get the equations in this way using that autocorrelation this coefficients a ks and we

get a new term called C C k minus k comma 1, or k comma i in this form. So, and this C

C capital Cs are the autocorrelation function will get that, but before that we look at the

form of total squared error, again it is expressed in terms of the covariance function C,

which  is  replacing  the  autocorrelation  function  used  in  the  previous  autocorrelation

method.
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And the form of that C i comma k is very similar to the previous one. However there is

some differences that we observe, that matrix form by the covariance function it is again

what we are getting it is symmetric because, C i comma k and C k comma i it is same

because the terms the product is a commutative operation; So, the value as same if you

change the order.

So, again we get a symmetric matrix, but everything is not same, the element along the

diagonal are not same, that C 0 0 C 1 1 C 2 2, they are not same ok, there is a change and

here we are showing that change in a quantitative way, if I look at C i comma i plus 1

comma k plus 1 in a more general sense, it is using that ci comma k plus, we are having a

new term and we need to eliminate one term out of ci comma k. So, there is a change or

we can say that the summation window is shifted by one place ok. So, that creates the

difference we do not get any more that to a please matrix.
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So, what we get instead, the computation of the covariance coefficients for that, we need

the data y n, we need it from minus p 2 n minus 1 for that range. So, we have to if the

data is given from 0 to or 1 to n we need to Reindex in it, and index it in this way. So,

that we have all the values available the output signal is available from the lag, or from

the instance minus p to capital n minus 1 ok.

However that different that is created between the autocorrelation and auto covariance

method, this distinction disappears at the interval of summation tends to infinity, if we

have more and more data, that difference actually disappears which is caused by addition

and the deletion of one sample from two different sides ok. So, they actually go to the

same thing.  So,  that  is  about  the  auto  covariance  method  and we stop here  for  this

session.

Thank you.


