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Now, we will talk about the parametric modelling. So, for the parametric modelling we

will look at.
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A difference equation it is a general difference linear equation shift invariant 1. So, we

get actually the output y n in terms of x n so, to be more precise few previous samples

and the present sample of x n and some previous values of y n ok.

And here we use couple of parameters that a ks and b ls, they are that deciding about the

characteristics about this linear equation and, we have a gain factor that G that is giving

that how much actually magnification would happen and, that the order of the system is

given as p and q. So, look at the p is the number of actually that the terms a ks and that q

is the number that numbers of b l ok.
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So,  that  is  the  way it  is  defined and what  we get  that  out  of  these  two parts  the  2

summation have been given, it is represents the moving average of the input x and that

the  other  part  the  first  summation  that  is  summation  over  y  that  is  called  the

autoregressive part, or AR part of the system and altogether we call this system as a auto

regressive moving average system or in short ARMA system. Here that x n in this such

kind of equation that x n could be any input, but for ARMA model that x n is chosen as

the white noise.

The reason is that white noise has something commonality with the impulse that in the

previous case in the point process we have seen the impulse the diving that the system. In

this case the white noise is chosen in place of that impulse that 1 part of it at is the that in

the physical model for example, for Ocado model we have seen that different kind of

input sometime the glottal pulse sometimes that the turbulent air coming through from

the lung. 

So, that turbulent air coming through the lung can be given actually modelled as this

white  noise.  So,  those  are  the  physical  you can  say that  significance,  but  there  is  a

mathematical significance also that in both the case, if we look at the autocorrelation

functions,  the autocorrelation  function  is  impulse  response and,  that  gives  rise  to  an

interesting fact,  that when you look at  the spectral  domain the spectrum is flat.  And

spectrum is flat means it has all the frequency components in equal measure.



So, white noise is not lacking in terms of any frequency input. So, by now using this

equation, we can chose that what part to keep and what part to eliminate ok. So, that that

is the way we can say that white noise is a rich in terms of the frequency and it can

actually represent help to represent any kind of output.
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Now, let us look more into it through observations first we make, the system can be

viewed  as  a  in  finding  impulse  response  filter,  or  IIR  filter  because  there  is  some

feedback loop. So, along with that we need to think about the stability and all, but the

system is an IIR system first we need to be aware of that.

The next point is that the past input and output indicate that system has some memory

here, the output depends on present input as well as the past inputs and some past outputs

also so; that means, the system has a memory. So, if there is any change in the input that

the overall output cannot change immediately because, of that memory it will require

some time to get actually those memories are erased, or updated by the new values and

then, only we can explain that overall change in the output, or we can say that the change

in output will have some inertia.
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Next what we get the model indicates that the output is a linear combination of present

and the few past output. So, because it is a linear combination of the the present input

past input and past outputs, we can tell this is a linear prediction model or in short LP

model.
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Now, if we take the z transform these difference equation we get in a new form and, we

can derive the transfer function is z out of it and, we get 2 polynomials consisting of a k

and b ls that the b l part that we will get in the numerator and the a k parts that we get



that those polynomial in the denominator and we get the gain factor G.
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Now,  here  again  we  can  make  some  observation  the  first  thing  is  the  system  is

completely determined by b l and a case ok, that that using these terms that we can get

that the system characteristics G is important, but not so, important because G is gives a

uniform scaling it, gives a uniform scaling irrespective of the frequency. 

So, if we are not much interested in the exact value;  that means,  if  we get  a scaled

version of the output that is fine, then we may afford to forget about G. And another

interesting thing that a case and b ls, they are equally applicable in the time domain and

the frequency domain,  in both the case we see them directly  and the system can be

determined  or  implemented  if  we  know  this  value.  So,  that  is  another  interesting

observation. 
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Now, we can actually represent that transfer function in different form for example, in

terms of pole 0 forms. And the same system we can actually represent with the help of

the p poles and q 0. Now this is another representation of the same system; however,

when we look at this poles and 0s this poles and 0s have equal amount of information as

the polynomial coefficients a ks and b ks, but these representation this is most specific to

the frequency domain.

Actually if we know the pole location, it could help us to know that where the PHD will

have a peak because, that is determined by the location of the poles and 0s will represent

that where the that the PHD will take a dip ok. So, we can get more clear information or

better indication about the frequency domain using this pole 0 model and this thing does

not have any direct counterpart in the time domain ok.
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So, now what we can do we can look at 1 specific part of it, by specific part what we

mean that we can first look at the AR part of it or the all pole model part of it, where the

output is determined by the p previous output value and the present input sample ok. So,

that is the way we are taking only a part of it of ARMA process and we call this that as

AR process

So, we are concentrating on that,  now here corresponding to that  we can have a the

transfer function to it, as if you can go to the z domain. And the transfer function here we

have represent as transfer function is represented as in this form that, we have that the

poles here or in terms of a ks here we have represented.
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And  for  the  biomedical  signal  this  AR  model  actually  is  more  common,  or  more

prevalent the primary reason is that, when we talk about the input the input is unknown

for the EEG PCG all such cases the inputs are coming from internal body parts which are

difficult to capture.

So, input is unknown in that case what we are observing in a non-invasive way the EEG

or PCG we only have the output. So, it is easier to model them with AR model ok. So,

that is the way we would go ahead with the modelling and for that AR model is the most

suitable vehicle.

So, when we try to predict from the past output, we get some predicted value that of y

what we have represented as y tilde ok, that the tilde is actually used to tell that it is

different from the actual value of y, or it is an estimate of y a and. So, there would always

be some amount of error in that prediction and that prediction error is represented by that

the term e n which is  nothing,  but  the difference  between the true value y n and is

predicted value. So, it can be represented by this polynomial ok

Again if we look at this polynomial the coefficients are a k ok. So, the polynomial is very

similar to that what is the polynomial of the AR model.
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Now, here if we have implement it we should look at the signal flow diagram, we get it

can be again represented as a tap delay filter, where we have some buffers or registers

which would give actually the previous value in a more precise way we can tell that we

have a tap delay line, this is the tap delay line which is capturing the previous values of y

n and at each step we are multiplying it with some coefficient and, we are accumulating

them to get the predicted value here. And if we take the difference of it with respect to y

n we get the output e n ok. So, that is the way we can get e n.
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Now, given y n that  is  a  signal  we observe for example,  EEG or PCG as you have

mentioned in the few slides back. The parameters if we want to calculate; that means, if

you want to find out the the system behind it, we need to find out those parameters and

that we can do by minimising these total  squared error. Already we have defined the

error term. So, if you take the total square error; that means, the overall the prediction

error for this signal by minimising that we can actually get those parameters.

In other words we want to take,  the parameters  in such a way that  the error can be

minimised or the prediction would be very near to the our the true signal. And if you

look at that this total square error it is nothing, but it is just a scaled version of the mean

square error, in case of mean squared error we have a scaling by the term that is given by

the number of samples of e n, that how many predictions we have done we should divide

by that. So, by applying that condition so, we can get actually that using the minimum

error condition at that point that, we take that value should be 0 here; we should just take

out a just 1 minute.

(Refer Slide Time: 16:48)

Here the concept  is that  we are going through a surface and we have some actually

minima, there we are trying to find out the minimum and when we reach that minima at

this point, then if this is the direction of 1 say a k for that, when we reach that minima at

that point the gradient has to be 0. So, we are making use of that property we are taking

the partial derivative and we are looking for that minimum point.



So, for the condition is that if we make it the value is 0 that can give us that minima and

as we have p such values of a ks or a i s whatever the index we use depending on that

that we can get so, many such equations we can get ok. We get p equations and this p

equations can be written in this way, in the left hand side we are getting the terms which

are  having  the  coefficients  a  ks  in  the  right  hand  side  that  is  free  from a  k.  So,  p

equations p unknowns so, if we know the value that other values which are coming from

the signal.

Now, we can compute a ks ok. Now these equation it is known as normal equation that is

another interesting point that it is called as normal equation the reason is if we look at

that.
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What we are trying to do? We are trying to get actually that y tilde y n and for that we

have computed y tilde n and y tilde n is expressed in terms of y n minus 1 to y n minus p.

So, it is a linear combination of actually this past values of the output.

So, now we can actually  write y as a  vector y n say y n is  a  vector in  a particular

direction  and  that  prediction  that  y  tilde  n  is  another  vector.  Now this  1  would  be

minimum, when we have a actually we draw a perpendicular from y n to these line ok.

So, because this is perpendicular and this value is e n this value is e n and this value is y

tilde n. So, this perpendicular means when the error is minimum at that time the error e

n, it is perpendicular to y tilde n means all the values of y n minus 1 to n minus p, all the



past values it is perpendicular, and from there it came that to know as a normal equation

ok. So, that is this the meaning that why this is called a normal equation.

(Refer Slide Time: 21:00)

Now, in this case if we try to next thing would be that what is the amount of error are we

have incurred. So, that also we can figure it out once you know the value of the a ks from

this equation, if we can find out the a ks y ns are already known. So, we can compute

what is the value of that minimum error, which can give us some idea that how the model

has been successfully fitted with the signal ok.

(Refer Slide Time: 21:40)



So, given this equation 1 and 2 the equation 1 is the first equation of the AR model and

equation  2  is  the  that,  equation  required  to  find  out  the  a  ks  now  the  range  of

minimisation, we can take first that is coming from minus infinity to plus infinity, or you

can say the simple intention is we want to actually minimise it over all the errors. And

that can give us the form of that the summation is taken from minus infinity to plus

infinity. So, when we take the summation of y n and y n minus 1 because, it is a linear it

is a shift in variance process, then we can tell it is nothing but the autocorrelation of y at

i-th lag ok.

Here we need to again keep in mind that we have assumed the signal a shift invariant, or

it is not changing with time. So, that is why we can write it in such compact form and phi

y is the ACF. And if you look at what we get in reality in real life, we can only get finite

number of samples and to be more precise, if we have n sample we can represented by

the value of small n is starting from 0 to capital N minus 1. And in that case we have to

modify the ACF estimate ACF estimate would be limited from n equal to i to n minus 1

minus i, the reason is that outside that interval that n equal to 0 to capital N minus 1, we

do not value we do not know the value of y n.

So, to keep that summation within that limit, we need to limit the that the interval of

summation.  So, that is the thing we have precisely done in this case and we have to

modify the autocorrelation function estimate what we can get in reality.
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Now, for that we get a little more compact form of the normal equation, we can write

equal to 1 to p that a case multiplied by the form that i minus k in the left hand side and

right hand side it has again autocorrelation coefficient of that phi that y. So, we have such

p equations do we have define and with the help of the p equations, we can actually get

the values of a k.

Now, before solving that let us look at some observation that first thing what we note, the

autocorrelation  function  is  sufficient  to  calculate  the  AR  parameters,  instead  of  the

signals, if we had only the value of the autocorrelation function of the output signal that

is sufficient to find out the model parameters or a ks. So, that is the first thing we note

and that is a very interesting observation.

Next point is the scaling of autocorrelation function does not matter because, both the

sides we have the autocorrelation function. So, if we scale actually that is scaling gets

cancelled; however, the normalisation of the ACF is a better way to compute, those ACFs

just to avoid the overflow of the accumulate, we are accumulating the sum of product so,

that that does not go beyond the register. So, it is better to actually normalise them from

the capacity of the machine point of view, but from the point of view of just say equation

any scaling is fine and scaling does not matter.
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And in this  case,  we can compute  the error  also in  terms of our the autocorrelation

function of the output signal and, the values of a ks and the different lags of that phi y.



So, what we get that for the AR model of model order p what all we need to know is p

plus 1 lag values lag values of the autocorrelation; that means, we need to know phi y 0

up to phi y p, we need to know that and for a real signal we know that autocorrelation

function is symmetry. 

So, we get the negative lags also. So, using that we can find out the values of a ks and

once we know those values, we can compute the minimum total squared error, also in

terms of the autocorrelation function and the a ks. So, this is the brief module on the that

autocorrelation function.

Thank you.


