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So, now we start the periodogram session again,
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First  we would  like  to  show different  kind  of  windows  and for  a  different  kind  of

windows, would like to  notice  you the forms.  The simplest  one is  a  the rectangular

window that we have finite amount of data. So, window varies up to that and then it

become 0 in either side.

So, corresponding to that; the filter we get that is sin function and next comes that that

Bartlett window instead of a rectangle,  it is a triangle,  we get that at the centre, it is

having the maximum value  one and both  the sides,  it  is  coming to slowly reducing

linearly and beyond a point that value more than a M, it will come to 0 next we get

Hanning window instead of a linear decrease in the window value again it is maximum at

the middle and I think few properties are common for all these windows that they have

maximum value at K equal to 0 and they are symmetric and also they are even function

ok.



So, this properties are common. Now the first one is having actually 0 slope, the second

one having linearly, it is decreasing from 0 to as we move either side, increase the lag

that having window, it is using a cosine function. So, they decrease this following the

cosine function and that cosine, we know when cosine 0, it is 1 and as we increase the

angle,  the  value  will  decrease  the  hamming  window  is  also  very  close  to  Hanning

window, only thing the proportion is  changed the DC value and this  value that  it  is

changed then the Prazen window it has the polynomial form of k ok.

So, these are the different choices of window to actually take care of the side lobes, but

the one which gives more attenuation in the side lobe we need to keep in mind the main

lobe width increases for that window more among these if we take the simplest one that

rectangular window it has actually smallest 3 dB bandwidth ok, but the attenuation of the

side lobe is very small at the same time.

So, it has very strong side lobes that is a demerit of it. Now as we move forward, you go

for the other windows, we get improvement in the separation of the side lobe, but at the

cost of increase in the width of the main lobe. In fact, both has their negative effects if

the two harmonics are there close by that side lobe frequencies that can accentuate and

actually merge them together, again if the separation of them is less than the main lobe

width, this two can become actually merged this two harmonics. So, you will not be able

to  separate  two  harmonics  as  a  two  different  one,  they  would  look  like  one  single

frequency in the periodogram. Now let us move forward from here.
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That we get a dilemma; so far, we have found that periodogram makes a life easy and we

all use it in real life, but we get to know after taking this previous session that it is not a

reliable estimator and we gave you the example of white noise to test it out. Now what is

the way out? Can we throw away periodogram and go back to the old classical definition

of autocorrelation may try that, but again the problem does not end because when we

have finite  amount of data how do we get infinite  lags of autocorrelation that  is  not

possible to calculate ok.

So, we do not have much fall back option. So, look for the way explore that how we can

move forward and the solution came as in the form of averaged periodogram; what it

suggests that let us take K independent data records and let us compute first record them

that x 0, x 1 2 x K minus 1 independent data records and compute the periodogram of

each one of them and the new periodogram estimate is the average of this individual

periodogram. So, that is the new estimate in front of us to take care of the problems

generated by the original definition of periodogram ok.
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So, let us see how far that this average periodogram that take care of the problems we

had earlier. So, periodogram estimate or the averaged periodogram, we have defined and

for that that if we look at that that each of the individual component we get it in this form

that it was like the previous estimate, we are taking just the average of them. Now, let us

have some observation out of that if we take the average the average the mean of the

averaged periodogram, it would be same as the mean of the periodogram of the each data

set; that means, if you take the expectation of the averaged periodogram and expectation

of the each of the individual that periodogram they will give us the same value ok.
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So, that is the first observation, we get next is about the bias the bias of the averaged

periodogram will be decreased by a factor of K, here actually we have taken K data sets.

So,  we  get  one  good  thing  after  taking  the  averaged  periodogram  that  variance  is

decreased and the property of bias remains to be same that if more data is there that we

have that lays bias and with increasing the data we were suffering from high variance in

the periodogram and high fluctuations in the that frequencies we can get rid of them or

we can suppress them at least and the decrease would be proportional to the or inversely

proportional to the number of such data sets we get.

But in real life actually the solution is not. So, easy what we really have that we have one

data  set  we  do  not  really  get  actually  K  independent  data  sets,  but  to  make  them

independent  as far as possible  out  of  the same data  set  what  we do we take K non

overlapping  blocks  because  if  we  take  overlapping  blocks  be  a  straight  away

contradicting the assumption that they need to be independent. So, we are taking K non

overlapping blocks of length L. So, the total data if it is n that is equal to K into L; that

means,  were  implies  in  all  the  data  what  is  given  to  divide  into  K  subsets  or  non

overlapping subsets.

So, in this way that we have generated the individual data sets which are assumed to be

independent at least that is true. So, long the observations are independent from each

other now to get the proper value of L, we take a technique called window closing. Now

what  do  you  mean  by  window  closing  for  that  we  need  to  go  back  to  the  bit  of

understanding that  what is  the effect of choice of K and n, we have seen that  if  we

increase the value of K, what will happen for a fixed n? 

L will decrease; that means, length of individual data sequence will decrease what will be

the effect of it we get that if we do that then we will have actually that band pass filter

which  comes out  of  the  finite  amount  of  data  set,  it  will  it  has  a  bandwidth  that  is

proportional to the number of data that is 1 by L in this case. So, frequency domain

resolution will decrease, if we reduce the L. So, that is not a good option.

Again  to  increase  the  L,  if  we  reduce  the  K  what  will  happen  frequency  domain

resolution  will  increase,  but  the  variance  also will  increase  in  the  frequency domain

because the variance is proportional to 1 by K. So, we are in a dilemma. So, what we do

really  in the window closing method initially  we start  with say one sequence of the



whole data and we see how the frequency estimate looks like or the PSD looks like it

will give highest amount of frequency resolution at the same time maximum fluctuations

also at the PSD. So, we will get very fluctuating estimate of PSD. So, after that what we

do we keep on increasing the K and thereby as from the value 1, it goes to 2, 3, 4, the L

decreases and we see that how the change takes place in the PSD and we continue the

operation till it becomes smooth, but we do not want the prominent peaks in the PSD that

will actually merge together and the PSD will look somewhat different.

So, we want to preserve the frequency resolution at the same time we want it to get

smooth or the variance should come to lower come down. So, we keep on changing the

K till that point and stop there when we see that it has become smooth enough, but the

separate peaks they are not got merged ok. So, that is the only way by manually tuning

them to go forward to actually change these values and that thereby select the ideal value

of K.
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Now, we get another suggestion that averaged periodogram could not solve our problem,

we can actually accept that it is better than the original periodogram, it helps to reduce

the that the variability in the PSD, but it does not completely eliminate the problem. So,

this  two gentlemen Blackman and Tukey; they came forward with their  analysis  and

suggestion to give a better solution. So, let us see; what is their offering, first, they point



out that what is the cause of the problem and from there in a very logical way, they build

up their theory.

So, let  us look at  their proposition.  So, the first  thing what they have suggested that

periodogram is a poor estimate of PSD and thereby, it gives a scope for improvement for

Blackman and Tukey now we can have some expression for them and for that we need to

look back the formulas of periodogram, if you look at the periodogram formula, what we

get in the periodogram; what we are actually taking that is the estimated autocorrelation

sequence instead of the autocorrelation sequence, we are taking the Fourier transform of

the estimated autocorrelation sequence to get the estimate of the PSD. 

So, that is the source of the problem; where here is the expression of the autocorrelation

function  here  is  the  function  of  the  autocorrelation,  the  estimated  autocorrelation

function  from a finite  data  set  for  the positive  lags,  we have computed  them as  the

window is changing, what we notice that number of terms is decreasing as the lag is

increasing because that data beyond x N minus 1 is not available. So, that is assumed to

be 0. So, even if you write here it does not make any sense and for the negative lags you

simply have taken that they are related by a conjugate transposed.

So, from that positive terms we can get the negative terms negative lags and for a real

data as conjugation does not make any change. So, it would be there is a reflection of the

same set of coefficients ok, for a complex input data, we will get actually the conjugate

otherwise, we will get just the a even function by such estimate ok. So, now, here let us

proceed for the analysis.
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That the Blackman Tukey, they suggested that the poor performance of periodogram is

due to poor ACF estimator, it is true that we have not taken the ideal estimator we have a

taken estimated ACF for doing the job. So, they have suggested that the ACF is the real

cause of the trouble the poor estimate what we have taken for periodogram and for that

they have taken the weakest point of periodogram, they have taken the last lag of ACF,

for that what we get, we get the estimated value is x star 0 into x n minus 1 by n. Now

what is so special about it? Here we do not have any averaging. In fact, we have the all

the terms to average; that means, N terms, we had to take average for the lag 0 as we

move increase the lag, we see the number of terms is reducing linearly.

And for the last lag there is no averaging at all now these cost us in terms of fluctuation

if there is no averaging that estimate what we are taking the ideally, we are suppose to

take actually expectation operator expectation operator of the two terms, that x star n into

x n minus K or you can take the star in the second one leaving the first one the way, it is

defined, now that expectation was actually replaced by the summation here using the

concept of the sequence that; this is a stationary sequence and that the averaging in the

random space can be replaced by the averaging in the time domain.

So,  that  averaging  being missing,  we have  to  pay for  that  penalty  and we get  high

variability in the estimate and unfortunately this is going to be there no matter, how large

is the N, only thing what will happen that for that lag this lag will also change; that



means, if the value of N was 10 initially, then you would get the maximum variance at

tenth lag. Now if N becomes 100, we will get that at hundredth lag, but qualitatively if

we look at that what is the betterment for the last lag, we cannot say anything positive

ok, qualitatively, there is no change this situation would be there and in these set up we

cannot do any change the mean of the ACF.

(Refer Slide Time: 24:46)

What  we  get?  It  is  actually  it  is  a  scaled  version  of  the  true  value,  if  we  take  the

expectation on both the sides; that means, of the estimated autocorrelation function r hat

x x K, we get this expression, this is the two autocorrelation and we get these term and

this is nothing, but actually triangular way multiplied with the real autocorrelation ok.

So, we get that there is a bias also is present by taking the expectation we are not getting

the true value ok. 

So, the mean of the ACF estimator at best, we can say equal to the true value weighted

by a Bartlett window that is a maximum positive, we can say and the first peaks that

comes to  our mind that  what we can do to make it  unbiased ACF estimate,  we can

change actually the formula of the real that estimate of the autocorrelation instead of

using 1 by N. We can actually  modify that at  least  we can use the number of terms

present in the summation and here is the new formula we get that new estimate estimated

autocorrelation we can take as summation of the terms within the given sequence please

keep in mind we cannot increase the number of terms here because we have the value



from for x n for n equal to 0 to capital N minus 1; that means, n terms are there, there is

no way to increase this one, what change we have done instead of taking 1 by N which is

insensitive to the lags that number of terms is reducing with increase in the lag. 

We are taking here the proportionate value here 1 by N minus mod k; that means, how

many terms are there, we are scaling in that way and the relation between the negative

lags and the positive lags remains the same there is no change there ok. So, that at least,

we hope can take care of that fact that we would not have the extra term here, what we

are getting in this form that Bartlett we know that that would be eliminated ok. So, that is

the expectation. So, if we can do it in this way.
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Now, let us see, what we get that in this way that the choice of unbiased ACF estimate

we made the estimate of ACF unbiased, but it gives raise to another problem that it can

give negative spectral estimate as these new unbiased ACF estimator does not guarantee

a positive semi definite sequence a; what we mean by that that as this is not a positive

semi definite sequence if we take the Fourier transform and take the absolute value.

The absolute value may become negative, now what is the problem with that the problem

is we are talking about the energy of a signal and energy cannot be negative, if we get a

negative spectral estimate, we are unable to explain that that how the energy becomes

negative. So, we wanted to do something very positive we wanted to fix the problem of

bias, but it has come out in a new way which is again detrimental to the that performance



of the estimator. So, let us let us look forward, let us see that what alternatives can be

made. In fact, Blackman Tukey, they suggested these alternatives.

So, we can take that that these are the new propositions of Blackman Tukey here, what

he suggested what or rather, what they suggested that the main problem is in the poor

ACF estimate at high lags due to fewer number of lag products for averaging the higher

the value of lag we have less terms for them and we get more and more poor estimate of

the ACF when we go for higher lag because of lack of averaging. So, we need to think

from that able that do something. So, one way is to give less weights to the ACFs at high

lag is very reasonable kind of assumption that were we have less confidence let us use

less percentage of information from there ok. So, that is the thing Blackman and Tukey

suggested and for that what they have told let us take.
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The estimate of estimated autocorrelation function as we take in the case of periodogram

and apply a window, earlier, we have introduced you with number of windows. So, they

gave a actually  solid footing for them that why they should be there let  us take that

window multiplied with the estimated autocorrelation estimate with a purpose to actually

give proper weighting to the different lags of autocorrelation function, we know near the

centre that autocorrelation function estimates that better and they become more and more

unreliable as we move away from the zeroth lag. So, w the windowing function should

actually look at that phenomena and take appropriate action for them.



So,  they  should  have  some property  first  of  all  that  for  different  lags  that  the  first

property would be that w 0 should be maximum that is equal to one and window should

be  positive  because  we  do  not  want  to  change  the  sign  of  the  that  autocorrelation

estimate. So, all the other lags are value should be in between 0 to one next that as the

autocorrelation estimates are even for the real data same would be true for the window.

So, it should be a even function third thing is that it should go to 0 beyond some m what

should be the value of m m should be less than N minus 1; that means, we could compute

actually the lags up to N minus 1 autocorrelation up to this point, but we know when you

go near to N minus 1 the number of terms to average would be very less. In fact, there

would be only one term at N minus 1 at lag. So, we need to get rid of that situation, we

should stop it much before that we should stop it at some value m beyond that we know

the estimates are so unreliable, there is no point in using them because if we try to take

them we may have more noise rather than real input.

So, we cartel that we use only the central portion of the estimates and weight them to

give  maximum weight  to  the  zeroth  lag and for  the other  lags,  we are giving  some

appropriate  weights  and  that  window  should  be  a  even  window. Now  let  us  move

forward using the last property of this window lag.
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Now the periodogram estimates it becomes gets a new form where instead of taking the

value of K minus N minus 1 minus N plus 1 to N minus 1 we restrict it from minus M to



plus  M or  using less  number  of  lags  and this  is  what  is  called  as  Blackman  Tukey

spectral estimator this is what they proposed and there is also another term, it is called

weighted  covariance  estimator  because  they  have  suggested  a  weight  to  the  that

autocorrelation function ok. So, this was the proposition of Blackman Tukey and we will

stop here for thus this session.

Thank you.


