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So, today we will go for the homomorphic processing. Before that we would like to

actually draw your attention to a phenomena, I hope all of you have tried to take some

photo of yourself of or for your friend. Now if you try to take the photo within the room,

and say that it is a good day; that enough light is there outside. So, instead of depending

on the artificial lights; that if you depend more on the light coming out actually coming

inside through the windows. If you take the images, you will find that when you take the

image that the friend who is close closest to the window; that after taking the image

received that that person has the brightest complexion.

Now, if you doubt the fact, then you can actually change the position that and you can

that put another friend closer to the window and take that picture group photo you will

see; that again the same phenomena, that if a person moves near to the window and that

it is actually that the complexion improves or becomes lighter. Now how that happens is

that that as the light is coming, the diffused light specially, not the direct sunlight that

from the window. We get actually more intensity close to the window and as we move

further that the intensity of the light actually decays, and thereby due to that non-uniform

illumination, any object that is nearer to the window looks brighter.

Now, if we take that as an example what we find that it is little different from the other

kind of noises, that was present in the discussion. The noises what we have dealt with so

far, they were additive noise any interfering signal we told that is noise and they are

actually  that  corrupting  the  signal  of  interest,  and they  are actually  corrupting  in  an

additive way. But in this case that if we look at the intensity of the light coming from the

window. That is actually getting multiplied with the that the object intensity. In fact, that

is getting reflected on the object and that is what we capture through our eye or through

camera.

So, here the noise we can say it is multiplicative in nature. So, such kind of case; that is

present in the nature and unfortunately the previous techniques what we have learned,



none of them they are effective there. But we have seen that the linear filtering it has a

lot of actually scope and lot of development. So, we are always tempted to make use of

the tools they are developed for the linear filtering. Or we can say that in other words

that what knowledge we have learnt we want to make use of them one more time. And

from there actually the concept of homo morphing the processing has come into play.

(Refer Slide Time: 03:41)

So, here that we get that first that that linear that system, linear space invariant system

LSI  system.  They  are  important  for  ease  of  analysis,  and  we  have  a  very  strong

mathematical background, and a lot of tools are developed out of them. That which falls

into this category linear shift invariant system the for example,  Fourier transform we

have lots of filters. So, they are all actually getting to these categories. And if we dip

actually deeply look into it that; why that linear shape invariant system is so effective or

attractive.  The  reason  is  what  we  find  that  it  is  making  use  of  the  theorem  of

superposition. So, that is actually is a cause of the popularity that makes a life much

more simple.

Now, these actually motivates us to find out a way that if we can make use of similar

actually  system, which can be used for the non-linear  actually  systems or non-linear

signals, and for that we are ready to extend this concept of superposition, and a name is

given  generalized  principle  of  superposition  for  that.  And  under  these  actually  that

generalized  principle  of  superposition,  whatever  the  tools  we  use  we  call  them  as



generalized linear filtering. They are little different from that the previous filters what we

have designed. And for that actually that we need to have some algebraic mapping or

algebraic transform which are called as homomorphic transform, and overall, we call it is

a homomorphic system.

(Refer Slide Time: 06:02)

So now we look into it more precisely. First, we look at principle of superposition, that

what it suggests that if we have 2 constituent signals x 1 and x 2 and we have a operator

that is addition. If we add them then we get that a resultant signal x 1 plus x 2 and after

the transform, that what value we will get out of it that the mapping of x 1 plus x 2 after

the transform T, it would be same as if we transform the that x 1 and x 2 first and then

add them up. So, that is one principle.

Next is that we have that principle of that where that the scaling is defined; that if we

have a scalar c which is multiplied with the that the input x 1, and then transform the

resultant value. It would be same as if we take the transform first and scale it up by the

scalar c. So, these 2 together we call as the principle, principle of superposition, these 2

rules. And they are the cornerstone of the linear system.

So now let us look at generalized principle of superposition. In this case that the same

kind of rule is defined, when we take the 2 inputs x 1 and x 2, the only change in this

case the generalization, that in the input domain we have a algebraic operator cross it

was defined. Now after the transformation with the map H homomorphic transform what



we are calling that we get into another domain and there the operator changes we get a

plus operator.

But the structurally they will remains the same. If we apply the operator in the input

space or the domain of definition of H, that in the same way that like the principle of

superposition we get another operator in the range space, with the help of that we can

actually add the 2 that the maps of x 1 and x 2. And we can get the same result. Same

way for the scalar also, that we have something defined that first we take that input space

that we have something colon that is an operator, which is defined for the that one scalar

and once a vector x 1. And after the transform that a new operator comes in it is place;

that is, in between the scalar and the vector in the range space, that is that the mapping of

x 1 after the transform, that we get the same relationship exists there.

The only thing the operators are different in the 2 spaces, but structurally it is same as the

principle of superposition. So, that is why we can call it as a that generalized principle of

superposition.  More so because now that  the previous principle  of superposition just

becomes a special case of it; where there is the same actually operators are used in both

the space. That is the domain of definition and the range space. So, that is the difference

we  get  between  the  principle  of  superposition  and  the  generalized  principle  of

superposition.
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Now, let us proceed and see that what we get next. That here what we can tell that such

systems are said to obey generalized principle of superposition with input operator a rule

combining each other each other; that means, it is a binary operator, that cross and the

colon is a rule combining with scalars. That and to an output system with operator plus

and dot for the case of that the scalar and that the vector that output space. And linear

systems  is  nothing  but  a  very  special  case  of  this  general  generalized  that  system,

generalized linear system we can say.

So, what we get first, that what all we have done it is nothing but a very special case of a

generalized linear system. And now we are going to expand it for the generalized linear

system.

(Refer Slide Time: 11:50)

So, here we are showing a diagram about the mapping edge. Now in this mapping the

point to note that x is the input this is the input and y is the output. And these 2 spaces

are different which are actually having a we have a map defined from x to y in the input

space. That is the domain of H. We have a cross operator. The equivalent to it in the

output space is the plus operator.

So, the relations what we had that for the previous over that in the input space, that

structure would be preserved, but the operator will  change. So now, this case it  also

actually these operators they have some more properties. First is that it is cumulative;

that  means,  sorry  commutative.  Commutative  means  the  order  of  operation  can  be



changed. And that in real life if you look at, many things are not commutative. If we look

at operations say every day to day tasks that operations, there are lot of them they are not

commutative in nature.

For example, we wear the socks before wearing the shoes. Now if we take them as 2

operators that wearing the socks and wearing the shoes there are 2 operators or 2 actually

items, they have they are following each other. Can we reverse the order can we wear the

shoe first and then go for the socks? Probably we cannot go for that. So, what we see that

in real life or all that things, what we do, everything is not commutative. They there the

order  is  very  important  order  of  operation,  but  here  what  we  get  that  some  of  the

operations are there where this order is not important.

For example, when we multiply the 2 numbers. Whatever order we take, 3 into 5 or 5

into 3 gives the same result. If we add 2 numbers, a plus b we can not we change that

order b plus a we get the same result. So, here these operators that cross and the plus,

both are commutative. That is one of the property they need to actually follow. Next is

they have to  be associative.  Associative  means,  the order  in  which the operators are

actually that used to combine the items; that order if it is changed. We do not have any

change in the ultimate result. In the first example what we are showing that x 1 x 2 x 3, 3

members are there in the input space, and we have the operator cross so that combining

them.

What we have done first, we have combined that x 1 and x 3, and then it is combined the

resultant is combined with x 1, then that the same result will get if we first combine x 1

and x 2 and the resultant is combined with x 3 with that operator cross. And the same

way goes for the range of the half that that map or transform H, and that is what we get

in the next line that for y also; when we use that the add operator we get  the same

associative rule that is followed.

So, these operators have to be associative and commutative in nature. That is another

thing we need to keep in mind.



(Refer Slide Time: 16:15)

Next, we go for a system to build a generalized filter. Here the challenge is that the one

we told earlier that. Sometimes we have multiplicative noise. So, here are also the same

kind of case that, we have a multiplicative actually signal, the components are getting

multiplied with each other, and we want to separate them out. So, what we do? The

signal or we can say that the observed signal x which has multiple components in it,

added in a or not added rather they are combined in a multiplicative way.

First what we do we pass them through the complex logarithm function. So, after taking

the log, what happens that initially if there was an operator that is the multiplication here.

That becomes an addition in the output space of the complex log. So, we get the signal x

hat  where  the  that  the  operator  becomes  addition,  and  now we can  have  the  linear

filtering and after the filtering we can get y hat, again we have to go back to the original

domain. So, what we do we apply a complex exponential, and go back to the that original

domain we get the answer is yn. And that again the operator cross comes into play. So,

that is the way it works.

And let us now go step by step through it. First is let us look at the input signal, input

signal xn or the observed signal, we can say it has multiple constituents x 1 and x 2 for

simplicity we have just taken the 2 components, they are combined in a multiplicative

way. Next is that we have that complex logarithm. First, we need to know that how to

compute the complex logarithm, if we take a complex number and take the log that what



we have to do first, we can express that complex number as that absolute value, and we

can take that as a angle as associated with it, or what we can call that it is that radial

actually the form we can express them.

And when we take the log what we get actually the log of the absolute value; first, that is

the this term, and we get the angle as the actually that complex term. Or imaginary part

of it is the angle and the real part of it is a log of the absolute value. So, that is the output

of the complex log. Now here complex log makes one more thing that it brings one more

challenge, and first let us point it out and then we get that how to fix that later. That when

we take the log operation and find out the angle we need to define that what is the range

of that angle. The value could be defined between 0 to 2 pi for example, or it could be

from minus pi to plus pi. So, within an interval it is there; however, the real angle it

could be actually outside this range.

But once we take it through the complex log, it will always mapped into that 0 to 2 pi

that kind of actually domain. So, it goes through a modulo operation, and because of that

we get some discontinuity in the signal now. For that we need to understand that what is

actually these phase means. Phase means there is a lag when we are talking about some

signal multiple components are there.

For example, when we talk about the Fourier transform of a signal we have multiple

frequencies present, each one of them has some magnitude as well as the phase. What

that phase means is that at the starting point, what was the phase difference between

them each one of them say if we take that.  Each one of them is a complex actually

sinusoid they are not starting from the 0 phase. They have some initial phase, and usually

what is found that the phases are changing continuously, and because of that there is no

guarantee that it would be actually contained within minus pi to pi or 0 to 2 pi whatever

range you may take.

So, either would be a continuous change in that and it can go beyond that; however, after

the that complex logarithm, it would be mapped into one of these range depending on

that how we are calculating that angle. So, that brings to a discontinuity. The previous the

smoothness in the phase that is lost, so later we need to take care of that. So, next that we

go for the complex exponential in case of complex exponential what we do? If we take

the exponential of a that complex number, that is x n again, that what we need to do, here



we have taken actually that part that what we have taken complex log we have taken the

complex exponential of that.

So, that gives rise to that we can expect actually write that that complex that log into 2

parts that one is the absolute value another is a that is a real part, and the imaginary part.

And with the help of that the first part what we get it is giving the absolute value mod x,

and the next we are getting the angle part of it and together, it gives us the xn. So, we just

show here that if we take the that the complex exponential after complex log, we will get

back the same signal except for that the problem created by this addition of discontinuity.

Now, if we feel that that can create a problem that discontinuity in the phase, then what

we need to do we need to do phase unwrapping. We will show that later when it actually

would be required..

(Refer Slide Time: 24:06)

Now, let us look at that that part that we have the 2 components of the observed signal x.

Which are x 1 and x 2, now if we take the logarithm, what happens for them. That as we

take  the  logarithm of  the  signal  xn,  and we replace  that  with  these  2 multiplicative

constituents; x 1 and x 2, we can simply add they actually write them as additive terms

after taking the log. So, which was actually that multiplicative term, previously now they

become additive, and we get x 1 hat and x 1 x 2 hat in a complex notation we write them

in that way.



Now, comes a question of filtering, and here it need to be mentioned clearly just like any

other filter; that means, the linear filter that x 1 hat and x 2 hat need to have some say for

a separation in some domain. Only then we would be able to separate them. For example:

that  we  look  for  that  filtering  to  separate  out  the  high  frequency  noise  or  power

frequency noise from the biomedical signal of interest. And there we need to first assume

that  the  signal  of  interest,  and  that  high  frequency  noise  they  are  separated  in  the

frequency domain.

So, here also x 1 hat and x 2 hat they need to be separated in that frequency domain or

some other way they need to have some separation, for successful separation of them if

that does not happen our attempt will not be successful. Fortunately, in many cases they

are actually separated and we can separate one from the other. Once that is done that

filtering is done, then we can actually look at that the next part of it that linear filtering

first  we use  to  separate  this  constituents.  And  then  we go for  that  next  part  of  the

operation.

(Refer Slide Time: 26:41)

That is we take that the output back in the using the complex exponential.

Now, here we show one such example actually in 2D. Here we are showing some MRI

image, in the left-hand side that we see one original MRI image, that the it is a image of

a of the brain. And we know for the MRI image, one thing is very important that we have

the strong magnetic intensity that actually helps to generate that MRI signal or that MR,



or that  image magnetic  resonance that what helps to build up.  And it  need to b that

magnetic  intensity  it  need  to  be  very  strong,  and  usually  that  is  made  out  of  that

superconducting magnets.

Now, it is very difficult task to keep that, the magnetic intensity uniform over the space.

Space means that where that that gantry is there within the gantry that the we can say the

cavity that should have that uniform intensity or that b magnetic that flask. Now because

of the in homogeneity of that, if we look at the map of it we get that we have that here a

huge in homogeneity in this case.

Now, because of these in homogeneity, there is an impact we get the inside part that is

brighter  and  the  outside,  the  part  it  would  be  darker.  And  now  if  we  can  use  the

homomorphic processing, we can separate them out..

(Refer Slide Time: 28:46)

And how that actually is possible, because that in this case that what we see that the

detailed component, that is due to the activity of the magnetic resonance. And the that

flask or the magnetite magnetic intensity that magnetic field intensity rather that part we

can say the illumination component. It is very slowly varying. Whereas, the part that

different parts are having different amount of actually activity. That part is changing very

quickly over the space.



So, that part the reflectance components is actually in the high frequency domain we can

say, whereas the intensity is slowly varying. So, we can have simple filtering to separate

them in the homomorphic domain. And thereby we can separate the low frequency part,

and get only the reflectance component which talks about the anatomy of the gray matter

or our brain.

So, with that actually we would take a break here, and we will come back again with

homomorphic processing.

Thank you.


