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First, we look at the least mean square Adaptive Filter or LMS filter. Now the change 

what we do looking at that bag that optimal filter.

(Refer Slide Time: 00:34)

In case of optimal filter, we have actually taken that the expected value of e n square that

we computed by the assumption of stationary city, rationality and the ergodicity of the

signal. And we have replaced the expected value of the square of error as that sum of the

error over the time. Now, as you know that thing cannot be done, because we are dealing

with non stationary signal, so we cannot have something called ergodicity. The simplest

thing what we could do we could drop the expectation operator and directly compute e

square n.

Now, by dropping that expectation operator it gives us a huge advantage in terms of

computation. Now let us see how it proceeds. So, we expand the square n we know that e

n is that x n minus that the weighted the reference signal. So, that that part that when you

expand we get this three terms, one is x n square and that we get cross between that x n



and the that the y n, that is generated out of the reference signal and we get it terms

square term out of the that reference signal here.

So, now using steepest descent technique, what we need to do the; at the next instant the

weight w n plus 1 it should be w n minus mu times the gradient. And again because the

process is changing over the time the gradient is also having an index of n. So, here the

mu is the step size which actually  controls the stability and the rate at which it will

converge to the optimal value and this delta n it is a gradient of the squared error with

respect to the tap weight, because tap weight is the only thing in our hand, that we can

modify to get a better estimate of the noise.

(Refer Slide Time: 03:31)

So, now that we compute the gradient of the that error with respect to the tap weight and

we get it is minus 2 x n into vector r n and twice the that the dot product of the weight at

the instant n, and the reference input r both of vector the dot product of these vectors into

that the vector r n. Now if you take these part, these part is common out of these two

what we get we get x n minus w T n into r n. So, these form you already know this is

very known form this is our error, error at instinct n. So, replacing these part in this

equation we simplify, it we get that the gradient is minus 2 e n into vector r n.

So, now if we replace that estimate of the gradient of the that error, we get here that the

new tap weight at the instant n plus 1 it would be the previous tap weight and the minus

sign along multiplied with this minus it gives us a plus, twice mu that the error at this



instant that is e n into the vector r n, which is the reference signal vector. Now these

equation is our update equation and this is known as Widrow Holf LMS algorithm, this

simple equation actually we can use to update the weights. And as we keep on to update

the weights it will actually keep on changing and (Refer Time: 06:05) to that the process

and if the process is changing because the signals and nonstationary.

So, it will actually respond to that change and by that updation of the weights, it will

always try to remain to be a optimal filter. So, that is the simple idea about that the

Widrow Hoff LMS algorithm which is very simple yet very effective.

(Refer Slide Time: 06:42)

And that is the reason it is very popular in the academy as well as in the industry.

So, now let us look at the special the attractions of the LMS algorithm, the fasting what

we  get  its  simplicity  and  ease  of  implementation  why  we  talked  about  the  ease  of

implementation? The reason is let us look at that signal, that what we get the previous the

page that update equation is so small and simple. What we need to compute we need to

compute that error. In fact, that is the output so in any case we need to compute that and

the reference vector of the that the reference vector, for that interfering noise that already

we have taken to compute that actually that output of the adaptive filter.

So, if we take the product of these two and scale it by two mu, that gives us the that the

change in weight. So, it needs actually that here one multiplication two mu is, one scalar



quantity then another term is e n and with that that we are computing change actually

multiplying with r n that is having dimension n into 1.

(Refer Slide Time: 08:51)

So, that the number of multiplication which needs one to compute 2 mu in two e n and

then  m  minus  1  rather  we  can  say  that  m  multiplications,  that  because  r  n  is  m

dimensional  vector  and  then  what  we  need  that  m  additions  because  each  of  the

component of the that tap weight it need to be modified.

So, 1 plus m multiplication and m additions so, they are actually very much lightweight

and that weight the implementation is very easy and simple. Now why we are so much

actually worried about the simplicity and ease of implementation? The reason is in case

of adaptive filter what we have proposed that we are going to update w n. So, at each

instant that before the new value of say x n comes; that means, once we get the x n we

need to compute that w n, before the arrival of n plus x n plus 1.

So, we have actually that one sampling period that is the maximum time to compute the

weight,  now let  us  look at  the  signal  if  the  signal  is  having a  frequency maximum

frequency is one hertz, then we have one second time. If it is 1 kilo hertz then we have

one mille second time. So, you see that more and more the sampling frequency that our

competition also need to be more and more fast and there it becomes very important that

the algorithm what we choose it is something that which we can implement in real time.



So, that is actually one of the very big bonus for the withdrawal of LMS algorithm. Now

let us look at the that the next the point, the expected value of the LMS tap weights

converges to the optimal  wiener solution,  when the inputs remains uncorrelated over

time. That means, what it is suggesting that if we have the input that is something which

becomes stationary at least over sometime it is not changing with the time, then we could

have used the optimal wiener filter.

Now these LMS algorithm will act as a that optimal wiener filter, in the sense that we

will get the same set of actually the tap weights or the tap weights will converts to that

ideal tap weights given by the optimal wiener filter. The only condition what we to be

maintained that the input that is the desired signal and the additive interfering signal,

they  should  remain  uncorrelated  with  each  other  over  the  time.  So,  this  is  the  only

condition on that signals, it does not demand that they need to be stationary or any other

mode condition.

Now the next important input that we need to choose actually this mu what is a that that

is called the tap weight very carefully, it should be bigger than 0, because if you take is 0

then there will be no updation of the weight. And again we told that it should be less than

one in the actually that it can be shown that it should be less than 1 by the 1 divided by

the largest eigenvalue of the reference input autocorrelation matrix.

(Refer Slide Time: 13:58)



The reference input r n that with the help of that its say m by 1 vector. So, we can get the

autocorrelation matrix of it, if we take the cross with the same vector or multiply with 1

by m vector  that  is  transport  or  transpose  form of  rn  vector. So,  it  can  give  us  the

autocorrelation and to get that autocorrelation, we need to take the expectation of this

and if we compute the eigenvalue of this matrix that mu should be less than 1 by that the

largest eigenvalue of this matrix.  And that  is  necessary for the stability  of that LMS

algorithm otherwise what can happen this LMS algorithm will never converge.

So, we need to choose mu very carefully and in practice that as you may not be able to

compute the eigenvalues. Usually, it is taken a very small value and we try to keep it

small so that the stability does not come under any question.

(Refer Slide Time: 15:35)

Now, let us see that what could be the impact of choosing the mu. That we get actually

two scenarios one is weight vector noise another we call weight vector lag. Let us start

with the second one the weight vector lag. We told that we should be very careful in

choosing the mu and it should be very small so that the stability does not come into

question. So, if we choose mu to be very small then what will happen the updation of the

rate of updation also to be very small because whatever the change was suggesting we

are reducing it by mu by multiplication.

So, we are taking that part of the change suggested. So, if you take mu to be very small

value, as the updates will be small if the process is changing, will see the compensation



is lagging behind and the optimal that filter that is our LMS algorithm is taking time to

adjust to the situation and the area will actually come down after a lot of time. Whenever

there would be a change in the process that LMS algorithm will change, but because of

its actually lack of speed in change it will lag behind, and because of that till it can catch

up there would be high error. So, that is something unwanted.

On the other hand if we increase the value of mu, what will happen the updation would

be faster, but in that case that when we go near the convergence and let us assume that

we have chosen it in such a way, that it does not cause any problem in the that stability of

that filter. But as we have increase that mu the updation is happening all the time even

after  the  convergence.  So,  there  will  always  be  a  change  in  the  error  and after  the

convergence we see that the noise is more.

So, that is called actually that situation is called weight vector noise; that means, there is

a noisy estimate we are taking for the weight vector, and that is getting reflected in the

output as noise. And the main source of it is that that the beginning of the LMS algorithm

that there was an expectation operator on the error we have actually drop that and this is

the result of actually removing that the expectation operator or that smoothing operation

there.

Now, what could be the ideal situation then? You would like actually to have mu to

change over time initially if the mu is little high then we can update it quickly, and we

can have actually low weight vector length and ones it converge then if you can reduce it

then we can get actually that less weight vector noise. So, both we can minimise usually

for a if you keep it a foxed value then we need to get one of them we cannot minimise

both at the same time, but if we can update the value of mu change the value of the mu

appropriately; that means, at the beginning if we can have little high value, then we can

reduce the weight vector lag and then once it goes to the convergence if we you reduce it

we can again reduce the weight vector noise.

So, with that expectation we come with a new update equation where the mu is changing

over the time and how it is changing the constant mu divided by m plus one you know

the m is the dimension of the that vector that tap weight vector and we have a function x

bar square and it is actually a function of different thing there is something called alpha a

forgetting factor then we have the reference the signal y n sorry r n and we have the



previous value of that x bar square and how it works let us look at that x bar square at the

instant n it is nothing, but that the alpha the part what we have taken as the forgetting

factor it is varies between 0 to 1.

It is alpha times the instantaneous energy of the reference signal and one minus alpha

times the previous estimate of that x, but square. So, if we start with the situation where r

n was0before the start. So, in that case what is happening, if we make alpha equal to one

it  will  change  directly  with  the  that  reference  signal  because  there  is  will  be  no

contribution of the previous value of the x bar square. And if we make alpha equal to 0

then that there would not be any updation because there is no contribution of r n square,

it will go only with the previous value of the x bar square.

Now if you choose in between a value which would be the case. It will take some part of

the reference input as well as it is actually using the part of the previous estimate. That

means, it will smooth out the change in the energy instantaneous energy of the reference,

and with the help of that we are updating the mu. And thereby, we are able to actually

optimise both the thing, that we would like to have when the system is changing less

weight vector lag and when it goes was the convergence that less weight vector noise.

(Refer Slide Time: 23:40)

So, let us see some actually graphs which will help us to understand this concept. So,

first we look at the scenario that we have taken in LMS filter, where the value of mu is

not that 1. So, 0.01 for these value we get for this process that as it is moving that there is



a noise all the time in the error the error is fluctuating, but it is converging steadily and

before 2000 iterations it has converge.

So, roughly we can tell that within 2000 iterations it has converge and after that we see

that  minus  300  dB  has  become  that  noise  power.  And  there  is  a  small  amount  of

fluctuations  is  there  which  is  that  weight  vector  noise and the lag  in  getting  to  that

position that is a 2000 iterations that is the weight vector lag.

(Refer Slide Time: 24:55)

Now, if you change this value that if we actually make it even smaller, that point naught

naught 3. So, what is happening in that case instead of 2000 now it is taking almost 6000

iterations to converge, and it is again converging to the same value minus 3000 and again

there is some amount of noise which was there at the time of adaptation as well as after

the convergence. So, what we get the weight vector lag has increased by reducing the

value of mu even smaller.

So, we know that what we get the message here that if you keep on reducing the mu it

may not actually help us in a new way.



(Refer Slide Time: 26:02)

Now let us look at the other scenario if we try to reduce the weight vector actually lag

and increase the value from 0.01 to 0.8. So, in that case what is happening see that it is

not in the previous cases if we look at that the previous cases that compare to that see in

the previous two example it was directly going towards the convergence the character

was smooth.

Now, in this case the trajectory is no more smooth and it is a jerky kind of movement, it

is going down again going up. So, moving away from the that minima again it is coming

down again going up and because of that nature it is taking more time though it is not

going up to 6000, but it is not actually that coming down by 2000 it is requiring more

time it is coming towards the convergence at 4000 iterations.

So, weight vector lag in this case has not reduced and associated with that we see that the

error after the convergence that is also have increased you see there is a movement above

the minus three hundred degree line over all error. If you look at here the changes are

more here. So, we see that by increasing the mu we are having more weight vector noise.

So, that these three examples that helps to get the importance of the choice of mu and

that  if  we can  get  that  mu in  a  proper  way then we can  actually  have  much faster

response and lower noise.

Thank you.


