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So, for the optimal filter this is the equation we get here, that we have in that equation

that for the optimal weight with the help of the autocorrelation function and the cross

correlation function.

(Refer Slide Time: 00:19)

And again we recall that the condition we have taken for the stationarity of the signal.

Here the signal  means not  only the stationarity  of  the oxford signal  actually  we are

talking  about  the  stationarity  of  the  desired  signal  and  the  noise  also  and  feature

independent with each other. That, using that that and for the real signal we can actually

right that phi i minus k equal to phi k minus 1 and same way theta minus k equal to theta

k. Now, using these facts and from the Wiener equation instead of actually the product

form or dot product we can say we can write it in terms of convolution also.

So, if you change phi k minus i by phi i minus k then actually we can that it becomes a

convolution term between the weight and that autocorrelation. Now, what is the benefit

in writing it in that way? We need to recall that some of the facts of the Fourier transform

that if we have two signal say x and y, now if we take the Fourier transform of these two



that  is  Fourier  transform of  x  dot  x  convolution  say y then  after  taking the  Fourier

transform it  becomes  the  product  of  the  individual  term Fourier  transform of  x  and

Fourier transform of y. So, we would be able to actually make use of that fact and for

that actually we have written this equation in the convolution form.

(Refer Slide Time: 02:55)

So, after taking the Fourier transform in the left hand side what we get that we have this

term W omega. W omega is the Fourier transform of the tap weight then if we take the

Fourier transform of the autocorrelation what we get we get the PSD of the signal. So,

the second term is PSD of the that observe signal x and to differentiate it with actually

that the cross PSD of the signal and the desired signal observed signal and the desired

signal we use this indexes we write here S xx for the PSD of the observe signal and S xd

for the cross PSD or cross for spectral density that in between the input signal and the

desired signal.

So, using these equations now we can write that the spectrum of the PSD of the signal it

is nothing, but that the ratio of the cross PSD between that observe signal and the desired

signal divided by the PSD of that observe signal. So, from here itself we get an idea if

you look at the spectrum of that the tap weights then where it to be high all those places

where the signal and the desired actually that see that observe signal and the desired

signal they have high cross correlation. 



If the cross correlation is very high then only that W omega would be high for that value

of omega. If it happened the cross correlation between the desired signal and the input

signal is low and there is some finite energy in the observe signal this ratio would be low.

So, that gives us some idea about that how we can how what would be the characteristics

of actually W omega.

Now, will proceed further to understand it in a more unambiguous way.
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So, first let us go back that what we have taken we have started with the observe signal

that is x n which consists of the desired signal and the noise m n. And these two both are

independent and they are stationary signals, thereby x n is also stationary signal.

Now, we can write the same that x n as well as d n and m n in vector form of the

dimension that M by 1. Now, in that way that what we can do we can now rewrite the

autocorrelation matrix phi. So, which can be written as expected value of x n and x times

transposed n.  And now, actually  replacing x n the vector x n with its  corresponding

constituent that is d n plus m n, so we can put it in that way. And we if we take the

multiplication we get four terms, first term is with just containing that only the desired

signal second and the third term they are having the cross between the desired signal and

the noise and the fourth one is having the only the noise term.



Now, using that what we get that these two cross terms they should go to 0 because what

we have assumed that the desired signal and the noise they are actually independent with

each other. So, using that condition of independence, we can get that these two that the

value should go to 0 or even if it is uncorrelated we tell that if it is uncorrelated if we

take the expectation of the product that value would go to 0. 

So, these two terms goes to 0 leading to the simplification of this term phi and we are left

with the two terms which gives the first gives the autocorrelation matrix of the observe

signal sorry the desired signal here and the second term is the autocorrelation matrix of

the noise. So, if we have some idea about the desired signal and some idea about the

noise that then we can actually compute them and we have already shown that how that

can be done in  practice.  So,  we can get  rough idea about the desired signal we can

compute these terms that and we can get the autocorrelation matrix of the noise as well

as for the signal.

So, first let us go back that what we have taken we have started with the observe signal

that is x n which consists of the desired signal and the noise m n. And these two both are

independent  and they are stationary and signals thereby x n is also stationary signal.

Now, we can write the same that x n as well as d n and m n in vector form of the

dimension that M by 1. Now, in that way that what we can do we can? Now rewrite the

autocorrelation matrix phi, which can be written as expected value of x n and x times

transposed n  and  now, actually  replacing  x  n  the  vector  x  n  with  its  corresponding

constituent that is d n plus m n. So, we can put it in that way. And we if we take the

multiplication we get four terms first term is just containing that only the desired signal,

second and the third term they are having the cross between the desired signal and the

noise and the fourth one is having the only the noise term.

Now, using that that what we get that these two cross terms they should go to 0 because

what we have assumed that the desired signal and the noise they are actually independent

with each other. So, using that condition of independence, we can get that these two that

the value should go to 0 or even if it is uncorrelated we tell that if it is uncorrelated if you

take the expectation of the product that value would go to 0. So, these two terms goes to

0 leading to the simplification of these term phi and we are left with the two terms which

gives the first  term gives the auto correlation matrix of the observe signal sorry, the

desired signal here and the second term is a autocorrelation matrix of the noise.



So, if we have some idea about the desired signal and some idea about the noise that then

we can actually compute them and we have already shown that how that can be done in

practice. So, with that rough idea about the desired signal we can compute this terms that

and we can get the autocorrelation matrix of the noise as well as for the signal.
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Now, let us get that what would be the term theta which is the cross correlation between

the observe signal and the death desired signal d n, the vector x n and the signal d n.

Now, here we can actually for the purpose of simplification we can rewrite the vector x n

in terms of the d n and m n. And while do that we get two terms one involving only d

[noise] , another the cross between the noise vector and the desired signal d n.

Now, again here we can make use of the fact that because these two are independent the

expected value of the product would go to 0. So, as these term is going to 0 we are left

with the first term only which is nothing, but actually that a vector of the auto correlation

matrix that it is the same actually signal that is the desired signal we are dealing with and

we have the fast actually that column of that. So, that is why we have written here that

this one with phi 1 d. So, it is the first column of the autocorrelation matrix or we can say

it is the autocorrelation vector of the desired signal.

So, in this way we can rewrite the optimal weight. Now, it is given by that the inverse of

phi d plus phi n that some of it the inverse of that into phi 1 d. So, this is the way we can

actually right about that the optimal weight W 0. So, that is one of the thing that how we



can in practice we would drive the W 0 when we do not actually directly get d. We did

not  have  to  get  the  exact  values  rather  we  can  actually  have  those  autocorrelation

function at the cross correlation actually autocorrelation function of the desired signal

and autocorrelation function of the noise. So, if we can get that that is sufficient to get

the optimal weight. So, that is the way actually it is computed in practice.
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Now, we come to the next step of it again we go back to the frequency domain. If you go

back to the frequency domain we have one actually benefit here that we can have a better

understanding about the process, that we can write the PSD of actually x equal to the

PSD of that the desired signal plus actually that of the that noise. It is coming from the

fact that we are found that phi xx equal to phi dd which for simplification that we have

use a notation phi d and then we have that phi m we could write from phi mm also and

taking the Fourier transform we are getting this one.

And with that that; and we can rewrite in the spectral domain that the spectrum of the tap

weight as that S d divided by S d plus S n or by dividing both the numerator and the

denominator by S d we can write it in this form. So, what we get out of it that when say

the noise is very high then the denominator will have high value, so at that particular

frequency the spectrum of the tap weight should be very low because the denominator is

high and thereby it will help in rejecting the noise. Now, if it happens that the signal is



also strong at that point then again the numerator sorry denominated will get actually

shrink and the value of the depth that spectrum of the tap weight will increase.

Now, let us look at the situation where the noise spectrum is absent or 0 in that case

irrespective of the value of d. So, long it is not 0 we get this term as 0. So, then the tap

weight will reach to the value 1 or you can become much high. So, where thus noise is

not present it will give access to the depth our signal spectrum in undistorted way it will

accept all the signal. 

When the noise is very strong and our desired signal is very low it will this denominator

will increase and it will reject actually it will it should reject all that that signals that is

because that is coming from the noise so the tap weight with become near 0. And when

intermediate situation occurs; that means, both the signal and the noise both at present in

that case the spectrum will be in some intermediate value. So, that gives us a much better

idea that how we can actually get the optimal tab weights or how it works.

And another in important information we get out of this equation. To get the optimal tap

weight what is the minimum thing, we need we need the spectral characteristics or the

PSD of the desired signal and spectral characteristics of the noise or to be more specific

the  additive  noise  these  two are  sufficient  to  actually  define  that  tap  weights  in  the

spectral  domain and from there we can get what will  be the tap weights in the time

domain.

So, with that we complete this discussion on the optimal filtering.

Thank you.


