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Good morning. So, today we will start with the optimal filtering. And first what we need

to realize that we talk about the optimal filtering the technique we will use that Wiener

filter, the first the point of it is optimized with respect to a desired characteristics, so first

we should try to understand that what we mean by that the optimal characteristics.

(Refer Slide Time: 00:40)

So, let us take an example.



(Refer Slide Time: 00:45)

So, because take a signal we had looking at the frequency domain plot and here we are

drawing the PSD and for that here is the say signal spectra some arbitrary spectra we

have taken, and let us take that there should be some noise spectra also.

(Refer Slide Time: 01:05)

This is the low frequency one I think you should use a different color for that. So, and

here the high frequency side, so this is for the say signal this is for the low frequency

artifacts, this is high frequency artifacts  and we can have one contribution of the say

power frequency this is power frequency hum. Now we have shown only the positive



part of the axis; however, if we actually take a real signal as in this case we should have a

reflection of the whole thing in the left hand side also.

Now, if we try to have a filter for it say we can draw a filter like this that we can take a

characteristics uniform then to avoid that we can have a notch and then it can we again

uniform and commit here. So, this could be our filter. Now here what we see there are

number of choices, the first point that here what we have trying that we try to have it like

a notch filter to avoid the power frequency hum, but this power frequency hum when we

are trying to reduce then we are actually losing some part of the signal also. Now should

we really make it 0 or will have a simple deep here so that some part of the signal we get,

but  at  the time that  along with that  we need to  then accept  some part  of the power

frequency signal also.

Let us look at the, that left boundary of the band pass signal. Here the way we have taken

that we wanted to avoid the low frequency artifact completely and by this choice that we

are actually eliminating that, but what is happening as it is all that in this zone in this

band that there is some actually signal energy also we are losing that. Now that is not

certainly desirable, we should try to keep all the signal energy and to reject all that the

noise energy.

In the right hand side boundary if  you look at  here then by choosing it  here we are

making sure that we are taking all  the signal energy, but then for these band we are

accepting a good part of the high frequency noise also. So, here lies the dichotomy that,

so long there is no overlap for example, if you had the scenario like this that we have

here is a signal and say that here is a the noise spectra, then we could easily separate

them with a filter. But when we have the overlapping spectra between the signal and the

noise then we have some actually problem in choosing the boundary and in that case

what best we can do that is the goal of that this optimal filtering. Because here we cannot

say simply that if I select it here that we can avoid all the noise actually energy while

without sacrificing the signal energy. Our goal should be then that do you try to get the

signal the as much as possible of the signal energy, but as low as possible the noise

energy. So, that is what is actually part we can talk about that optimality.

And when we talk about the word optimal actually another word should follow optimal

in what sense if we do not tell that then actually description is incomplete. So, slowly we



will come to that point. Here just a sake of brevity we have not mentioned there we

follow that. Now, to go for these optimal filtering or here the Wiener filter which has

gone in the name of the inventor, that we look at the assumptions we need to have on the

signal and the noise. The signal here that it should be that and the both the noise it should

be stationary. Stationary means it should be weak sense stationary because that is the one

what we can get and this two should be independent if you want to make it little loose

then you can tell that they need to be uncorrelated at least.

So, this much is required. So, they are two random processes which is stationary and

independent that is the minimum condition it is needed for the Wiener filtering design or

to show that we have a design where we get a optimal filter. Now let us look at the signal

our signal is here that x n that is the observed signal and here it consist of that the real

signal plus noise. So, we pass it through a tab delay filter or some registers we can say

and with the help of this delay line we get the present value of the signal as well as few

passed value of the signal they are multiplied with respective weights and we add them

up and at the end of it what we get we tell that this is the desired signal; the d tilde n.

And to get optimal filter we also need something called that that what is the reference or

what is the desired signal and with respect to that if we subtract from the desired signal

we get some error. So, we will try to minimize that. So, when we told that we are talking

about an optimal filter and it should have some sense of optimality we talk about that this

error should be minimized in mean square error terms. So, that is the sense we use. So,

let us proceed with it and we move forward, we describe that what is that the input is x

the tap weights are w i, i equal to 0 to M minus 1. That means the equal number of

actually  that  input  signals  what  we  have  that  many  number  of  weights  should  be

required. And output is d tilde n and desired signal is d n and we can actually write it in

this form that in the set of as equation that is first equation is this, that it is nothing but

that some actually weighted you can say average of the that our the present and the past

inputs and error is the difference between the desired signal and the prediction for the

desired signal that is d tilde n.

And here one point I would just like to actually point out that here that w k this index is

suggesting that with which lag of the input it  is multiplied and it  does not have any

actually that index with n. What it suggest, thus that this weights they are not varying

with time whereas, x n is changing with time, signal is changing, that the desired signal



is changing with time and the prediction of the desired signal also changing with time.

And for the time being I would request you to assume that some d n is there. Now there

could be a practical question that you get d n is there then why we are doing all such

thing we can take d n and we can proceed with that. So, let us shelf that idea for that time

being that question we just keep it for the future, we will take it up later.

Let us go through the deduction of this and learn about this Wiener filter and then we

will get back to it that how we get d n for the practical use. So, let us proceed then, for it

that.

(Refer Slide Time: 14:20)

So,  for  the  Wiener  filter  that  here  we  are  now writing  down  the  different  that  the

constituents first is a weight and here I think we should first make some of these things

clear  that  when we write say x this is a scalar. See when we use when we read the

notations in the book then we have a choice of number of fonts, but when we write by

pen and paper, then we need to be very careful that we are not that accurate to reproduce

this fonts. So, we are following some simple notation. Say if x is a scalar then we would

tell that x one bar below it would be a vector and we will have another notation will use

it a little later that if we write two bar then it will be a matrix. So, we keep it simple we

follow this notation so that we can actually  right it with pen and paper easily and it

becomes unambiguous. Otherwise, sometimes fonts look very close to each other and we

get confused that whether it is a scalar or vector or whatever it could be.



So, with that notation what we get that first we have written that the weights as w with a

bar below it that is the weight and it is a column vector. And what kind of column vector

it is? M by 1 dimensional one column vector. Same way the input signal x n it has been

written in a vector form and it is again a column vector because we have written a row

and then transpose and with that that again we are having a M by 1 column vector.

Next, we get that what is the output at actually that instant d n before d n. Let us go back

again x n and note that this vector also is changing over the time. So, we have an index n

and that the configuration of it is the first point or the top most point in this column is the

present value and then we moving forward in the past that we are going back that x n

minus 1 x n minus 2 in that way, in that way that we have M minus 1 lags of x n.

And when you talk about d n it is a scalar d tilde n. So, say d tilde n how we get that we

get by the dot product of these actually w and x n vectors. So, we can write it that w

transport x n or x transposed w in both the ways. And then we have the error e n again e

n is a scalar it is nothing but the difference between the that desired signal d n minus that

d tilde n here we have directly put that value of d tilde n. So, this is a error we compute.

So, this is what we would be trying to actually minimize.

(Refer Slide Time: 16:14)

So, here we define our objective function as J w; that means, these objective function this

is a function of the weights. See only these weights are in our hand to control this all the

other things that  what is  the input signal that  is  what we observe,  what is a kind of



actually that the signal we have chosen, what is the noise and what is the desired signal

nothing is actually in our control we are given with them or we will get them. Only thing

what we can actually  make a change that is with the weights or w, so this objective

function that mean square error or in short MSE that is the function of the weights we

have written it as J w.

And when we talk about optimal filter then what we mean that it should be optimal in the

mean square error sense. The meaning of it is that we would like to have as minimum

error as possible; that means, we please refer to that that figure we have drawn earlier

that we wanted to show that whenever we are choosing a filter and the situation is so that

there is overlap in spectra of the signal and the noise either we pick up some part of the

signal or we sacrifice some part of the (Refer Time: 18:00) where actually part of the

desired signal we sacrifice or we pick up some part of the noise.

So, here we are having a balance between that, so that the error in the desired signal is

minimum. If we include mode of noise then we are moving away from the goal if we

lose some part of the desired signal then also we are moving away from the court, so we

are just trying to have a balancing act between these two. And for that we have taken the

expected value of the squared error why you have taken that that here we have taken e n

that because we are dealing with the real signal we are happy with actually that e square

n, otherwise we have to take actually the mod of e n square if the e n is a complex signal

we may have to take this one, but here the things a simple that we are dealing with real

signal, so we are happy to take the just e n square.

And we are taking the expected value of it the reason is that as a signal x n is a random

signal our desired signal d n is a random signal and why it is so, our desired signal is a

random signal noise is also random, their constituents are random and even error is also

random. So, when we talk about minimization of it we should take actually the expected

value of it or we should look the look at that error and on an average basis and try to

minimize that quantity. So, we have taken the expectation of it.

Now, in the next step what we do, that we have expanded this e n we have actually

replaced it with the that the values what we have actually shown in the previous page

that the x where that expression of e n we actually make use of that and we put that the

two terms for e n into e n and when we multiply that we get a term that with d n square



two terms which are cross between that vector x n and d n that is a desired signal and the

vector of observe signal. Here is the second term for that and of course, that we have that

the weights and the last term is actually the cross product of the two vectors the that they

are representing the observe signal or their value at the that particular instant n.

Now, this quantity will give us a matrix, but the thing to note that we knew we should

check the dimensionality that we will get that overall each of this terms has to be a scalar

because  the  error  is  a  scalar  quantity.  So,  in  out  of  these  the  first  thing  we  could

recognize that expected value of d square n it is a variance of the desired signal and

assuming it is zero mean. We told you earlier that whenever we are working with signal

processing the first thing we assume or sometimes even without stating, we take that

signal is zero mean unless it  has some special  meaning in it.  So, we have taken the

desired signal is zero mean and in that case this quantity that expected value of d square

n it gives us the variance of the desired signal. So, that is the first observation.

Now, let us look at what are the other consequence here.

(Refer Slide Time: 22:36)

Second, that the part what will look at that we get that x n vector and d this is a cross

product between the input vector x n and the desired actually signal d n. Now these thing

we get a actually the cross correlation between the two signals and we represent that by

theta, we represent that by this term theta. Here we should note one thing that we have

not given any index with the time. The theta is not a function of the time.



Now why it is so, because we have assumed both that signals they are stationary. So, the

cross correlation of that that kind of signal they would not change with time. So, we have

not used any index for the theta, but theta is a vector and for that vector theta that we

have that the different components that the first term is theta 0, next term is theta 1 and

going in that way up to theta 1 minus n and the form of it that that each of this term we

can write that theta minus k equal to x expected value of x n minus k into d n. Had it not

been a stationary signal one of them then we should have actually we would have to

write this one that instead of theta k we need to write it as theta n minus k comma n in

that way.

We could  not  simplify  it  and represented  by the  lag  between the  two instances  and

simplify this one and then we get the transposed of it also that we get a transpose of this

term. So, theta T also we get, so that is what the third second and the third term we get.

(Refer Slide Time: 25:36)

So, and then we look at that the whole thing that we have another term that is the fourth

term what we have received here that is the cross between the two values that is x n and

x  n  this  cross  of  that.  And  here  if  you  check  the  dimensionality  the  x  n  has  a

dimensionality say dimensionality is M by 1 and x transposed it has 1 by M.

So, at the end what we are getting a auto multiplication M by M 1 matrix we are getting

here. So, that is the, as we are taking the cross between the same signal that is a observe

signal x we call it is a autocorrelation and we are getting a autocorrelation matrix of the



dimension M by n and we represent that by that the term phi or phi transpose that is as it

is given here. And please look at the notation that we have given the two bars below the

phi to signify that it is a matrix and the consequence are phi we are marking them as

from phi 0 to one side that M minus 1 and it is starting from phi minus M plus 1 to phi M

minus 1. And for each of this term phi i minus k the expression is that it is expected

value of x n minus k into x n minus i. And again let me remind you that we can put it in

this  simple  form because  that  of  the  assumption  of  stationarity.  Had  it  not  been  a

stationary signal we could not be able to write it in such a simple form.

Another thing we note here that as we are talking about the expected value of the product

of these two and product is a actually that cumulative operation, we can change the order

of them and if you change the order of them instead of phi i minus k you will get phi k

minus i. So, what we get that phi i minus k equal to phi k minus i. So, essentially what

we  get  that  these  terms  are  actually  that  across  the  point  0  that  the  phi  terms

autocorrelation terms they are symmetric for the real signal and for that here to populate

these matrix we need not actually the values from that phi minus M plus 1 to phi M

minus 1, if we have the values from say starting from 0 to say if we can have the values

for M minus 1 that will be sufficient to populate this matrix. So, that is the first initial

description about that optimal filter.

Thank you.


